The success of Mycobacterium tuberculosis ( MTB ) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path‐seq) to sequence miniscule amounts of MTB transcripts within up to million‐fold excess host RNA . Using Path‐seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1 / desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Tuberculosis is still a major health problem worldwide and one of the main causes of death by a single infectious agent. Only few drugs are really effective to treat tuberculosis, hence, the emergence of multiple, extensively, and totally drug resistant bacilli compromises the already difficult antituberculosis treatments. Given the persistent global burden of tuberculosis, it is crucial to understand the underlying mechanisms required for the pathogenicity of Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis, in order to pave the way for developing better drugs and strategies to treat and prevent tuberculosis. The exclusive mycobacterial cell wall lipids such as trehalose monomycolate and dimycolate (TMM, TDM), phthiocerol dimycocerosate (PDIM), sulpholipid-1 (SL-1), diacyl trehalose (DAT), and pentacyl trehalose (PAT), among others, are known to play an important role in pathogenesis; thus, proteins responsible for their transport are potential virulence factors. MmpL and MmpS proteins mediate transport of important cell wall lipids across the mycobacterial membrane. In Mtb, MmpL3, MmpL7 and MmpL8 transport TMM, PDIM and SL-1 respectively. The translocation of DAT and biosynthesis of PAT is likely due to MmpL10. MmpL and MmpS proteins are involved in other processes such as drug efflux (MmpL5 and MmpL7), siderophore export (MmpL4/MmpS4 and MmpL5/MmpS5), and heme uptake (MmpL3 and MmpL11). Altogether, these proteins can be regarded as new potential targets for antituberculosis drug development. We will review recent advances in developing inhibitors of MmpL proteins, in the challenging context of targeting membrane proteins and the future prospects for potential antituberculosis drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.