In the present study we investigated the effects of infantile/prepubertal chronic oestrogen treatment, chemical sympathectomy with guanethidine and combined sympathectomy and chronic oestrogen treatment on developing sensory nerves of the rat uterus. Changes in sensory innervation were assessed quantitatively on uterine cryostat tissue sections stained for calcitonin gene-related peptide (CGRP). Uterine levels of NGF protein, using immunohistochemistry and ELISA, and mRNA, using Northern blots and in situ hybridization, were also measured. Finally, levels of TrkA NGF receptor in sensory neurons of T13 and L1 dorsal root ganglia (DRG), which supply the uterus, were assessed using densitometric immunohistochemistry. These studies showed that: (1) chronic oestrogen treatment led to an 83% reduction in the intercept density of CGRP-immunoreactive nerves; (2) sympathectomy had no effect on the density of uterine sensory nerves or on the pattern of oestrogen-induced changes; (3) NGF mRNA and protein increased following sympathectomy or chronic oestrogen treatment; and (4) oestrogen produced increased intensity of labelling (28%) for TrkA receptors in small-diameter sensory neurons, but decreased labelling (13%) in medium-sized neurons, which represent the large majority of the DRG neurons supplying the upper part of the uterine horn. Contrary to expectations, increased levels of NGF after sympathectomy and oestrogen treatment did not lead to increased sensory innervation of the uterus. The possibility that alterations in neuronal levels of TrkA contribute to the lack of response of uterine sensory nerves to the oestrogen-induced increase in NGF levels is discussed.
The present study analyses the participation of ovarian innervation during reproductive senescence. We use the model of acute peripheral pharmacological sympathetic denervation with guanethidine in young (3 months old), middle-aged (12 months old) or old (18 months old) rats with spontaneous or induced ovulation. Ovarian levels of norepinephrine (NE) were measured by HPLC and the oestrous cycle, the number of ovulating animals and the percentage of atretic follicles were also assessed. Aged animals showed a progressive reduction in ovulatory capacity and an increase in ovarian NE content. Acute denervation increased the percentage of healthy follicles in 12- and 18-month-old rats compared with control adult animals. Combined treatment of denervation plus stimulation with gonadotrophins doubled the number of ova shed in young adult rats and restablished a partial ovulation in 12-month-old rats. The results suggest that ovarian noradrenergic innervation plays a modulator role in ovarian physiology during the ageing ovary process. The action of ovarian noradrenergic innervation seems to be associated with folliculogenesis and the ovarian response to gonadotrophins.
Previous studies have shown that chronic administration of oestrogen during postnatal rat development dramatically reduces the total content of noradrenaline in the uterine horn, abolishes myometrial noradrenergic innervation and reduces noradrenaline-fluorescence intensity of intrauterine perivascular nerve fibres. In the present study we analysed if this response is due to a direct and selective effect of oestrogen on the uterine noradrenaline-containing sympathetic nerves, using the in oculo transplantation method. Small pieces of myometrium from prepubertal rats were transplanted into the anterior eye chamber of adult ovariectomised host rats. The effect of systemic chronic oestrogen treatment on the reinnervation of the transplants by noradrenaline-containing sympathetic fibres from the superior cervical ganglion was analysed on cryostat tissue sections processed by the glyoxylic acid technique. In addition, the innervation of the host iris was assessed histochemically and biochemically. The histology of the transplants and irises was examined in toluidine blue-stained semithin sections. These studies showed that after 5 wk in oculo, the overall size of the oestrogen-treated transplants was substantially larger than controls, and histology showed that this change was related to an increase in the size and number of smooth muscle cells within the transplant. Chronic oestrogen treatment did not provoke trophic changes in the irideal muscle. Histochemistry showed that control transplants had a rich noradrenergic innervation, associated with both myometrium and blood vessels. Conversely, in oestrogen-treated transplants only occasional fibres were recognised, showing a reduced NA fluorescence intensity. No changes in the pattern and density of innervation or in the total content of noradrenaline of the host irises were detected after chronic exposure to oestrogen. We interpreted these results to indicate that the effects of oestrogen on uterine noradrenaline-containing sympathetic nerves are neither selective or direct, but result from an interaction between sympathetic nerve fibres with the oestradiol-primed uterine tissue. A potential effect of oestrogen on the neurotrophic capacity of the uterus is discussed.
Oestrogen is a key factor in the remodelling of uterine sympathetic nerves during puberty and the oestrous cycle; these nerves are influenced by changes in their target uterine tissue. The magnitude of oestrogen-induced responses might however be influenced by the maturation stage of sympathetic nerve fibres, the age of the neurons and/or the developmental state of the uterus. We have therefore compared the sympathetic innervation of the uterus following chronic oestrogen treatment of infantile/prepubertal and young adult intact and ovariectomised rats. Treatment of infantile/prepubertal rats resulted in the complete loss of intrauterine noradrenaline (NA)-labelled sympathetic nerves and a marked reduction in the total NA content in the uterine horn. Chronic treatment of young adult rats had little effect. To examine whether the age of the neurons or the degree of development of the uterus determined responsiveness of nerves to oestrogen, we assessed the effects of oestrogen on the sympathetic reinnervation of intraocular transplants of young adult uterine myometrium into ovariectomised adult host rats. Early treatment (10 days post-transplantation) resulted in less sympathetic innervation than late treatment (30 days post-transplantation). Measurements of nerve growth factor (NGF) levels in the uterine horn of control rats before and after puberty and following infantile/prepubertal chronic oestrogen treatment and acute oestrogen treatment of young adult rats revealed a coordinated increase between the growth of the uterus and NGF protein levels. Thus, developing and recently regrown sympathetic nerves are more susceptible to oestrogen-induced changes in the uterus than mature nerves, differential susceptibility is not related to the age of the neurons or the developmental state of the uterus and changes in NGF protein do not account for the differential susceptibility of developing and mature uterine sympathetic nerve fibres to oestrogen. Growing sympathetic fibres are more vulnerable to oestrogen than mature fibres and nerve fibres that have been in contact for longer periods with their target become less susceptible to oestrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.