Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.
Dogs participating in endurance exercise, including herding, hunting and racing have a greater energy requirement and may be more susceptible to nutrient depletion, electrolyte imbalance and metabolic stress. The objective of the present study was to investigate the acute response to unstructured mixed exercise in American Foxhounds fed a nutrient-fortified endurance diet. Thirty-nine adult Foxhound dogs (median age: 5·0, range: 2–10 years and median body weight (BW): 36·4, range: 24·9–49·5 kg) were allotted to a standard performance diet (Control) or nutrient-fortified endurance diet for adult dogs (Test). Dogs were balanced by sex, age, BW and athletic performance between diets. All male dogs were intact, whereas all the female dogs were spayed. After 80 d on diet, blood samples were collected via jugular puncture at baseline (0 h), and at 3 and 25 h post-exercise (mean: 17·7 (sem 0·92) km run over 2–3 h). Plasma taurine concentration and complete amino acid (AA) profile, serum chemistry and creatine kinase were measured. Serum chemistry profile remained within normal ranges throughout the study. A significant (P < 0·05) diet by time interaction was observed for calcium, alkaline phosphatase and most AA. Plasma taurine and most essential AA were increased (P < 0·05) after exercise and remained greater (P < 0·05) in dogs fed the Test diet, including the branched-chain AA (isoleucine, leucine and valine). Creatine kinase increased (P = 0·01) after 3 h and returned to baseline after 25 h post-exercise, but was not altered by diet. These data indicate that dogs undergoing a moderate bout of exercise did not suffer from electrolyte imbalance, and that a nutrient-fortified diet resulted in greater plasma taurine and essential AA concentrations.
The objective of the present study was to evaluate the changes in blood metabolites, AA profile, and oxidative stress markers in American Foxhound dogs fed a nutrient-fortified endurance diet while undergoing unstructured endurance exercise over several months. Thirty-six adult American Foxhound dogs (mean age: 4.5, range 2 to 10 yr and mean BW: 34.7, range: 23.1 to 46.9 kg) were selected to participate in the study. Prior to the study, all dogs consumed a commercial diet for 16 wk. After collecting baseline blood samples, dogs were assigned to a standard commercial performance diet (control) or a nutrient-fortified dog food (test). Dogs were balanced by gender, age, body weight, and athletic performance between diets. During the study, dogs underwent 78 bouts of exercise, with approximately 22 km/bout. Blood samples were collected after 40, 75, 138, and 201 d on study (October 2012 to March 2013). All blood metabolites were similar at baseline and serum chemistry profile remained within normal ranges throughout the study. Over time, plasma taurine and vitamin E concentrations decreased (P < 0.05) in dogs fed the control diet but were maintained or increased (P < 0.05) in dogs fed the treatment diet. Also, plasma creatinine and triglycerides were lower (P < 0.05) and blood phosphorus and alkaline phosphatase were higher (P < 0.05) in dogs fed the treatment diet. Vitamin E and taurine status of dogs appear to be affected by extended endurance exercise. These data suggest dogs undergoing endurance exercise may benefit from supplementation of vitamin E and taurine to minimize oxidation and maintain taurine status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.