TitleAtomically precise graphene nanoribbon heterojunctions from a single molecular precursor AbstractThe rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR)heterojunctions represents a key enabling technology for the design of nanoscale electronic devices. Synthetic strategies have thus far relied on the random copolymerization of two electronically distinctive molecular precursors to yield a segmented band structure within a GNR. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through a late-stage functionalization of chevron GNRs obtained from a single precursor that features fluorenone substituents along the convex edges. Excitation of the GNR induces cleavage of sacrificial carbonyl groups at the GNR edge, thus giving rise to atomically well-defined heterojunctions comprised of segments of fluorenone GNR and unfunctionalized chevron GNR. The structure of fluorenone/unfunctionalized GNR heterojunctions was characterized using bond-resolved STM (BRSTM) which enables chemical bonds to be imaged via STM at T = 4.5 K. Scanning tunneling spectroscopy (STS) reveals that the band alignment across the interface yields a staggered gap Type II heterojunction and is consistent with first-principles calculations. Detailed spectroscopic and theoretical studies reveal that the band realignment at the interface between fluorenone and unfunctionalized chevron GNRs proceeds over a distance less than 1nm, leading to extremely large effective fields.
Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far, the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers. All bottom-up GNR heterojunction structures created so far have exhibited random sequences of heterojunctions and, while useful for fundamental scientific studies, are difficult to incorporate into functional nanodevices as a result. In contrast, we describe a hierarchical fabrication strategy that allows the growth of bottom-up GNRs that preferentially exhibit a single heterojunction interface rather than a random statistical sequence of junctions along the ribbon. Such heterojunctions provide a viable platform that could be directly used in functional GNR-based device applications at the molecular scale. Our hierarchical GNR fabrication strategy is based on differences in the dissociation energies of C-Br and C-I bonds that allow control over the growth sequence of the block copolymers from which GNRs are formed and consequently yields a significantly higher proportion of single-junction GNR heterostructures. Scanning tunneling spectroscopy and density functional theory calculations confirm that hierarchically grown heterojunctions between chevron GNR (cGNR) and binaphthyl-cGNR segments exhibit straddling Type I band alignment in structures that are only one atomic layer thick and 3 nm in width.
A series of trigonal planar N-, O-, and S-dopant atoms incorporated along the convex protrusion lining the edges of bottom-up synthesized chevron graphene nanoribbons (cGNRs) induce a characteristic shift in the energy of conduction and valence band edge states along with a significant reduction of the band gap of up to 0.3 eV per dopant atom per monomer. A combination of scanning probe spectroscopy and density functional theory calculations reveals that the direction and the magnitude of charge transfer between the dopant atoms and the cGNR backbone are dominated by inductive effects and follow the expected trend in electronegativity. The introduction of heteroatom dopants with trigonal planar geometry ensures an efficient overlap of a p-orbital lone-pair centered on the dopant atom with the extended π-system of the cGNR backbone effectively extending the conjugation length. Our work demonstrates a widely tunable method for band gap engineering of graphene nanostructures for advanced electronic applications.
Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile CBr bonds, the introduction of weaker C-I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy (STM) imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors for chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). This observation is consistent with diffusionlimited polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C-Br or the C-I bonds.3
The ability to tune the band-edge energies of bottom-up graphene nanoribbons (GNRs) via edge dopants creates new opportunities for designing tailor-made GNR heterojunctions and related nanoscale electronic devices. Here we report the local electronic characterization of type II GNR heterojunctions composed of two different nitrogen edge-doping configurations (carbazole and phenanthridine) that separately exhibit electron-donating and electron-withdrawing behavior. Atomically resolved structural characterization of phenanthridine/carbazole GNR heterojunctions was performed using bond-resolved scanning tunneling microscopy and noncontact atomic force microscopy. Scanning tunneling spectroscopy and first-principles calculations reveal that carbazole and phenanthridine dopant configurations induce opposite upward and downward orbital energy shifts owing to their different electron affinities. The magnitude of the energy offsets observed in carbazole/phenanthridine heterojunctions is dependent on the length of the GNR segments comprising each heterojunction with longer segments leading to larger heterojunction energy offsets. Using a new on-site energy analysis based on Wannier functions, we find that the origin of this behavior is a charge transfer process that reshapes the electrostatic potential profile over a long distance within the GNR heterojunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.