Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.
Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but placenta appears to be an alternative and more readily available source. This study comprehensively compared human placenta-derived MSC (hpMSC) and human bone marrow-derived MSC (hbmMSC) in terms of cell characteristics, optimal growth conditions and in vivo safety specifically to determine if hpMSC could represent a source of human MSC for clinical trial. MSC were isolated from human placenta (hpMSC) and human bone marrow (hbmMSC) and expanded ex vivo using good manufacturing practice-compliant reagents. hpMSC and hbmMSC showed similar proliferation characteristics in different basal culture media types, fetal calf serum (FCS) concentrations, FCS heat-inactivation experiments, flask types and media replacement responsiveness. However, hpMSC and hbmMSC differed with respect to their proliferation capabilities at different seeding densities, with hbmMSC proliferating more slowly than hpMSC in every experiment. hpMSC had greater long-term growth ability than hbmMSC. MSC from both sources exhibited similar light microscopy morphology, size, cell surface phenotype, and mesodermal differentiation ability with the exception that hpMSC consistently appeared less able to differentiate to the adipogenic lineage. A comparison of both hbmMSC and hpMSC from early and medium passage cultures using single-nucleotide polymorphism (SNP) GeneChip analysis confirmed GTG-banding data that no copy number changes had been acquired during sequential passaging. In three of three informative cases (in which the gender of the delivered baby was male), hpMSC were of maternal origin. Neither hpMSC nor hbmMSC caused any acute toxicity in normal mice when injected intravenously at the same, or higher, doses than those currently used in clinical trials of hbmMSC. This study suggests that human placenta is an acceptable alternative source for human MSC and their use is currently being evaluated in clinical trials.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor- pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC-and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:83-95
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.