Background The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. Results In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. Conclusions Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.
Galendromus occidentalis (Nesbitt) is an important biological control agent of spider mites (Acari: Tetranychidae) in Washington apple orchards. It was thought to be essentially the sole phytoseiid existing in this system, due in part to its resistance to commonly used orchard pesticides, and organophosphates in particular. To test this assumption, we conducted a survey of 102 commercial apple blocks in Washington to characterize the community of phytoseiid species. Seven phytoseiid species were found in our samples; G. occidentalis and Amblydromella caudiglans (Schuster) were found in the greatest abundance. We hypothesized that the gradual shift away from the use of organophosphates in recent decades may have caused the change in phytoseiid community structure. The survey data and information regarding the management, location, and surrounding habitat of each block were used to determine what factors affect phytoseiid abundances. Galendromus occidentalis abundance was positively affected by the use of conventional (vs. organic) spray programs, and the use of the acaricide bifenazate. Amblydromella caudiglans abundance was negatively affected by bifenazate use and positively affected by herbicide strip weediness; it was also less prevalent in 'Golden Delicious' blocks compared to other cultivars. These results indicate that A. caudiglans reaches higher abundances in orchards that lack certain agricultural disturbances, whereas G. occidentalis can survive in more disturbed environments. Surveys of this nature can provide valuable insight to potential drivers of community structure, allowing for the improvement of integrated pest management programs that incorporate conservation of newly recognized biological control agents such as A. caudiglans.
BACKGROUND: Biological control in conventional agroecosystems involves the integration of chemical and conservation tactics, requiring knowledge of pesticide non-target effects on key natural enemies. Even for natural enemy groups such as predatory mites (Acari: Phytoseiidae), where pesticide non-target effects have been thoroughly examined, there may be significant differences in species susceptibility to specific active ingredients, including newer selective products. Using bioassays, we examined lethal (female mortality) and sublethal (fecundity, egg hatch, larval survival) effects of ten miticides on a spider mite pest (Tetranychus urticae) and three insectary-purchased predatory mites (Phytoseiulus persimilis, Neoseiulus californicus, and N. fallacis) commonly used for its management. Susceptibility of field-collected and insectary-reared populations of P. persimilis was also compared. Cumulative impacts on production of larvae by treated female spider mites and predators were compared to create a metric that simultaneously accounted for miticide efficacy and selectivity.Results: Bifenthrin was the least selective, as it caused acute toxicity to all predators and had little efficacy against T. urticae. Hexythiazox and cyflumetofen were the most selectively favorable. Phytoseiulus persimilis populations were similar in which miticides they were sensitive to, although the insectary-purchased population was generally more sensitive.Conclusions: All products, including those considered selective (cyflumetofen, bifenazate, acequinocyl) had non-target effects on at least one species of predator tested. This work emphasizes that there is high variability in selectivity among species, highlighting the need to examine key natural enemies individually when creating management programs. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.