BACKGROUND: Biological control in conventional agroecosystems involves the integration of chemical and conservation tactics, requiring knowledge of pesticide non-target effects on key natural enemies. Even for natural enemy groups such as predatory mites (Acari: Phytoseiidae), where pesticide non-target effects have been thoroughly examined, there may be significant differences in species susceptibility to specific active ingredients, including newer selective products. Using bioassays, we examined lethal (female mortality) and sublethal (fecundity, egg hatch, larval survival) effects of ten miticides on a spider mite pest (Tetranychus urticae) and three insectary-purchased predatory mites (Phytoseiulus persimilis, Neoseiulus californicus, and N. fallacis) commonly used for its management. Susceptibility of field-collected and insectary-reared populations of P. persimilis was also compared. Cumulative impacts on production of larvae by treated female spider mites and predators were compared to create a metric that simultaneously accounted for miticide efficacy and selectivity.Results: Bifenthrin was the least selective, as it caused acute toxicity to all predators and had little efficacy against T. urticae. Hexythiazox and cyflumetofen were the most selectively favorable. Phytoseiulus persimilis populations were similar in which miticides they were sensitive to, although the insectary-purchased population was generally more sensitive.Conclusions: All products, including those considered selective (cyflumetofen, bifenazate, acequinocyl) had non-target effects on at least one species of predator tested. This work emphasizes that there is high variability in selectivity among species, highlighting the need to examine key natural enemies individually when creating management programs. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Spiders are key predators in many agroecosystems, including orchards. Despite the importance of spiders in biological control, pesticide nontarget effects on this group are poorly described. This is especially true for herbicides, which spiders frequently encounter as they move between the ground cover and tree canopy. We sought to determine the nontarget effects of seven herbicides used in orchards on three species of spiders that are commonly found in Washington state (USA) orchards: Pelegrina aeneola (Curtis) (Araneae: Salticidae), Philodromus cespitum (Walckenaer) (Araneae: Philodromidae), and Phanias watonus (Chamberlin & Ivie) (Araneae: Salticidae). Immature spiders were collected from orchards and used in laboratory assays. Single spiders were placed in vials with dried herbicide residues and mortality was evaluated after 1, 2, and 5 d. We also evaluated herbicide impacts on prey consumption rates and on spider movement using motion-tracking software. Only oxyfluorfen caused significant spider mortality. P. cespitum seemed to be less acutely sensitive to oxyfluorfen than the two salticid species. Several herbicide treatments significantly increased locomotion in P. cespitum, whereas rimsulfuron numerically decreased movement of P. aeneola. Sulfonylurea herbicides (rimsulfuron, halosulfuron) decreased prey consumption of P. aeneola. Our work indicates that although spiders may be less acutely sensitive to some pesticides than beneficial insects, they can be affected by sublethal effects of herbicides. Future work should determine if herbicide applications impact spider abundance in the field and reduce biological control services. In general, more work is needed on the impacts of herbicides on natural enemies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.