Meyssignac et al. Measuring OHC to Estimate the EEI efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
Ocean warming accounts for the majority of the earth's recent energy imbalance. Historic ocean heat content (OHC) changes are important for understanding changing climate. Calculations of OHC anomalies (OHCA) from in situ measurements provide estimates of these changes. Uncertainties in OHCA estimates arise from calculating global fields from temporally and spatially irregular data (mapping method), instrument bias corrections, and the definitions of a baseline climatology from which anomalies are calculated. To investigate sensitivity of OHCA estimates for the upper 700 m to these different factors, the same qualitycontrolled dataset is used by seven groups and comparisons are made. Two time periods (1970-2008 and 1993-2008)
The East Australian Current (EAC) is the complex and highly energetic poleward western boundary current of the South Pacific Ocean. A full-depth current meter and property (temperature and salinity) mooring array was deployed from the continental shelf to the abyssal waters off Brisbane Australia (278S) for 18 months from April 2012 to August 2013. The EAC mooring array is an essential component of the Australian Integrated Marine Observing System (IMOS). During this period the EAC was coherent with an eddy kinetic to mean kinetic energy ratio of less than 1. The 18-month, mean, poleward-only mass transport above 2000 m is 22.1 6 7.5 Sverdrups (Sv; 1 Sv [ 10 6 m 3 s
21). The mean, poleward-only heat transport and flow-weighted temperature above 2000 m are 21.35 6 0.42 PW and 15.338C, respectively. A difference in the poleward-only and net poleward mass and heat transports above 2000 m of 6.3 Sv and 0.24 PW reflects the presence of an equatorward EAC retroflection at the eastern (offshore) end of the mooring array. A complex empirical orthogonal function (EOF) analysis of the along-slope velocity anomalies finds that the first two modes explain 72.1% of the velocity variance. Mode 1 is dominant at periods of approximately 60 days, and mode 2 is dominant at periods of 120 days. These dominant periods agree with previous studies in the Tasman Sea south of 278S and suggest that variability of the EAC in the Tasman Sea may be linked to variability north of 278S.
In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002 • C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.