Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine crosstalk between PSCs and PDAC is orchestrated by the utilization of specifi c transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGnIFICAnCE: This work identifi es critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specifi c alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifi cally activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.
The elucidation of the biological significance of RNA post-transcriptional modifications is hampered by the dearth of effective high-throughput sequencing approaches for detecting, locating, and tracking their levels as a function of predetermined experimental factors. With the goal of confronting this knowledge gap, we devised a strategy for completing global surveys of all ribonucleotide modifications in a cell, which is based on the analysis of whole cell extracts by direct infusion electrospray ionization mass spectrometry (ESI-MS). Our approach eschews chromatographic separation to promote instead the direct application of MS techniques capable of providing detection, differentiation, and quantification of post-transcriptional modifications (PTMs) in complex ribonucleotide mixtures. Accurate mass analysis was used to carry out database-aided identification of PTMs, whereas multistep tandem mass spectrometry (MS n ) and consecutive reaction monitoring (CRM) provided the necessary structural corroboration. We demonstrated that heat-map plots afforded by ion mobility spectrometry mass spectrometry (IMS-MS) can provide comprehensive modification profiles that are unique for different cell types and metabolic states. We showed that isolated tRNA samples can be used as controlled sources of PTMs in standard-additions quantification. Intrinsic internal standards enable direct comparisons of heat-maps obtained under different experimental conditions, thus offering the opportunity to evaluate the global effects of such conditions on the expression levels of all PTMs simultaneously. This type of comparative analysis will be expected to support the investigation of the system biology of RNA modifications, which will be aimed at exploring mutual correlations of their expression levels and providing new valuable insights into their biological significance.
Highlights d Hepatocytes engulf live CD4 + T cells, with a preference for regulatory cells d We called this process enclysis and compared it with known cell-in-cell processes d ICAM-1 and b-catenin accumulated at the point of T cell engulfment d Enclysis was seen in health, in liver cancer, and especially in autoimmune disorders
The challenges posed by the analysis of mono-nucleotide mixtures by direct infusion electrospray ionization (ESI) were examined in the context of recent advances of MS technologies. In particular, we evaluated the merits of high-resolution mass analysis, multistep gas-phase dissociation, and ion mobility determinations for the characterization of species with very similar or identical elemental composition. The high resolving power afforded by a linear trap quadrupole (LTQ)-orbitrap allowed the complete differentiation of overlapping isotopic distributions produced by nucleotides that differed by a single mass unit. Resolving 12C signals from nearly overlapped 13C contributions provided the exact masses necessary to calculate matching elemental compositions for unambiguous formulae assignment. However, it was the ability to perform sequential steps of gas-phase dissociation (i.e., MSn-type analysis) that proved more valuable for discriminating between truly isobaric nucleotides, such as the AMP/dGMP and UMP/ψMP couples, which were differentiated in the mixture from their unique fragmentation patterns. The identification of diagnostic fragments enabled the deconvolution of dissociation spectra containing the products of coexisting isobars that could not be individually isolated in the mass-selection step. Approaches based on ion mobility spectrometry (IMS)-MS provided another dimension upon which isobaric nucleotides could be differentiated according to their distinctive mobility behaviors. Subtle structural variations, such as the different positions of an oxygen atom in AMP/dGMP or the glycosidic bond in UMP/ψMP, produced detectable differences in the respective ion mobility profiles, which enabled the differentiation of the isobaric couples in the mixture. Parallel activation of all ions emerging from the ion mobility element provided an additional dimension for differentiating these analytes on the basis of both mobility and fragmentation properties.
The simultaneous detection of all the post-transcriptional modifications (PTMs) that decorate cellular RNA can provide comprehensive information on the effects of changing environmental conditions on the entire epitranscriptome. To capture this type of information, we performed the analysis of ribonucleotide mixtures produced by hydrolysis of total RNA extracts from S. cerevisiae that was grown under hyperosmotic and heat shock conditions. Their global PTM profiles clearly indicated that the cellular responses to these types of stresses involved profound changes in the production of specific PTMs. The observed changes involved not only up-/down-regulation of typical PTMs, but also the outright induction of new ones that were absent under normal conditions, or the elimination of others that were normally present. Pointing toward the broad involvement of different classes of RNAs, many of the newly observed PTMs differed from those engaged in the known tRNA-based mechanism of translational recoding, which is induced by oxidative stress. Some of the expression effects were stress-specific, whereas others were not, thus suggesting that RNA PTMs may perform multifaceted activities in stress response, which are subjected to distinctive regulatory pathways. To explore their signaling networks, we implemented a strategy based on the systematic deletion of genes that connect established response genes with PTM biogenetic enzymes in a putative interactomic map. The results clearly identified PTMs that were under direct HOG control, a well-known protein kinase pathway involved in stress response in eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.