Exploring Artificial Intelligence (AI) in English Language Arts (ELA) with StoryQ is a 10-hour curriculum module designed for high school ELA classes. The module introduces students to fundamental AI concepts and essential machine learning workflow using StoryQ, a web-based GUI environment for Grades 6-12 learners. In this module, students work with unstructured text data and learn to train, test, and improve text classification models such as intent recognition, clickbait filter, and sentiment analysis. As they interact with machine-learning language models deeply, students also gain a nuanced understanding of language and how to wield it, not just as a data structure, but as a tool in our human-human encounters as well. The current version contains eight lessons, all delivered through a full-featured online learning and teaching platform. Computers and Internet access are required to implement the module. The module was piloted in an ELA class in the Spring of 2022, and the student learning outcomes were positive. The module is currently undergoing revision and will be further tested and improved in Fall 2022.
While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model’s performance evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group. The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health. Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms in advancing our understanding and management of mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.