No abstract
The effect of plasticizer species and the degree of hydrolysis (DH) on the free volume properties of poly(vinyl alcohol) (PVA) were studied using positron annihilation lifetime spectroscopy. Both glycerol and propylene glycol caused an increase in the free volume cavity radius, although exhibited distinct plasticization behavior, with glycerol capable of occupying existing free volume cavities in the PVA to some extent. The influence of water, normally present in PVA film under atmospheric conditions, was also isolated. Water added significantly to the measured free volume cavity radius in both plasticized and pure PVA matrices. Differences in plasticization behavior can be attributed to the functionality of each plasticizing additive and its hydrogen bonding capability. The increase in cavity radii upon plasticizer loading shows a qualitative link between the free volume of voids and the corresponding reduction in Tg and crystallinity. Cavity radius decreases with increasing DH, due to PVA network tightening in the absence of acetate groups. This corresponds well with the higher Tg observed in the resin with the higher DH. DH was also shown to impact the plasticization of PVA with glycerol, indicating that the larger cavities—created by the weaker hydrogen bonding acetate groups—are capable of accommodating glycerol molecules with negligible effect on the cavity dimensions.
Citation for published item:friddikD erron nd pongD ee tF nd tti¡ eD ilise pF hF nd viD eixun nd kodD wximilin F eF nd gourhyD plorene nd hompsonD ihrd vF @PHIVA 9flooming of smeti surftntGplstiizer lyers on spinEst poly@vinyl loholA (lmsF9D vngmuirFD QR @RAF ppF IRIHEIRIVF Further information on publisher's website: This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. The magnitude of this surface excess increased significantly in the presence of the plasticizer, and the surfactant was largely excluded from the PVA subphase. NR revealed smectic nanostructures for both SDS and glycerol components within this surface excess in plasticized films. This combined layer comprises surfactant lamellae, separated by interstitial glycerolrich layers, which is only formed in the plasticized films and persists throughout the surface excess. Atomic force microscopy micrographs of the film surfaces revealed platelike structures in the plasticized PVA, which were consistent with the rigid defects in the surfactant-rich lamellae. The formation of these structures arises from the synergistic surface segregation of SDS and glycerol, evidenced by surface tensiometry. Cloud point analysis of bulk samples indicates a transition at ∼55% water content, below which phase separation occurs in ternary films. This transition is likely to be necessary to form the thick wetting layer observed and therefore indicates that film components remain mobile beyond this point in the drying process. ■ INTRODUCTIONPoly(vinyl alcohol) (PVA) is a semicrystalline synthetic polymer that has been widely exploited for its ability to form high-quality optically transparent films. Characteristics such as degree of hydrolysis (DH) and degree of polymerization must be carefully controlled to provide optimal physical properties such as strength and solubility of PVA films. 1,2 For many industrial applications, pure PVA films are too brittle and inflexible; hence, plasticizers are introduced into the system. Glycerol has been shown to be a compatible plasticizer 3 and is utilized in many cases to improve film flexibility while retaining good levels of tensile and shear strength.The prediction of surfactant behavior in polymer films and the tendencies of small molecules to migrate and segregate remains a fundamental scientific challenge, which has...
This aims to establish design rules for the influence of complex polymer matrices on the surface properties of small molecules. Here, we consider the dependence of the surface behaviour of some model additives on polymer matrix hydrophobicity. With stoichiometric control over hydrolysis, we generate systematic changes in matrix chemistry from non-polar, hydrophobic PVAc to its hydrolysed and hydrophilic analogue, PVA. With the changing degree of hydrolysis (DH), the behaviour of additives can be switched in terms of compatibility and surface activity. Sorbitol, a polar sugar-alcohol of inherently high surface energy, blooms to the surface of PVAc, forming patchy domains on surfaces. With the increasing DH of the polymer matrix, its surface segregation decreases to the point where sorbitol acts as a homogeneously distributed plasticiser in PVA. Conversely, and despite its low surface energy, octanoic acid (OA) surprisingly causes the increased wettability of PVAc. We attribute these observations to the high compatibility of OA with PVAc and its ability to reorient upon exposure to water, presenting a hydrophilic COOH-rich surface. The surfactant sodium dodecyl sulfate (SDS) does not show such a clear dependence on the matrix and formed wetting layers over a wide range of DH. Interestingly, SDS appears to be most compatible with PVAc at intermediate DH, which is consistent with the amphiphilic nature of both species under these conditions. Thus, we show that the prediction of the segregation is not simple and depends on multiple factors including hydrophobicity, compatibility, blockiness, surface energy, and the mobility of the components.
The vertical depth distributions of amine oxide surfactants, N,Ndimethyldodecyl amine N-oxide (DDAO) and N,N-dimethyltetradecyl amine N-oxide (DTAO), in poly(vinyl alcohol) (PVA) films were explored using neutron reflectometry (NR). In both binary and plasticized films, the two deuterated surfactants formed a single monolayer on the film surface with the remaining surfactant homogeneously distributed throughout the bulk of the film. Small-angle neutron scattering and mechanical testing revealed that these surfactants acted like plasticizers in the bulk, occupying the amorphous regions of PVA and reducing its glass-transition temperature. NR revealed little impact of plasticizer (glycerol) incorporation on the behavior of these surfactants in PVA. The surfactant molecular area in the segregated monolayer was smaller for DTAO than for DDAO, indicating that the larger molecule was more densely packed at the surface. Surface tension was used to assess the solution behavior of these surfactants and the effect of glycerol incorporation. Determination of molecular area of each surfactant on the solution surface revealed that the structures of the surface monolayers are remarkably consistent when water is placed by the solid PVA. Incorporation of glycerol caused a decrease of molecular area for DDAO and increase in molecular area for DTAO both in solution and in PVA. This suggests that the head group interactions, which normally limit the minimum area per adsorbed molecule, are modified by the length of the alkyl tail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.