In insects, species comparisons suggest a weak association between upper thermal limits and latitude in contrast to a stronger association for lower limits. To compare this to latitudinal patterns of thermal responses within species, we considered latitudinal variation in heat and cold resistance in Drosophila melanogaster. We found opposing clines in resistance to these temperature extremes in comparisons of 17-24 populations from coastal eastern Australia. Knockdown time following heat shock increased towards the tropics, whereas recovery time following cold shock decreased towards temperate latitudes. Mortality following cold shock also showed a clinal pattern. Clinal associations with latitude were linear and related to minimum temperatures in the coldest month (for cold resistance) and maximum temperatures in the warmest month (for heat resistance). This suggests that within species both high and low temperature responses can vary with latitude as a consequence of direct or indirect effects of selection.
The ability of sensitive rainforest species to evolve in response to climate change is largely unknown. We show that the Australian tropical rainforest fly Drosophila birchii exhibits clinal variation in desiccation resistance, but the most resistant population lacks the ability to evolve further resistance even after intense selection for over 30 generations. Parent-offspring comparisons indicate low heritable variation for this trait but high levels of genetic variation for morphology. D. birchii also exhibits abundant genetic variation at microsatellite loci. The low potential for resistance evolution highlights the importance of assessing evolutionary potential in targeted ecological traits and species from threatened habitats.
One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold-acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold acclimation that standard laboratory assays do not detect. Thus, although physiological acclimation may dramatically improve fitness over a narrow set of thermal conditions, it may have the opposite effect once conditions extend outside this range, an increasingly likely scenario as temperature variability increases under global climate change.field performance ͉ plasticity ͉ thermal stress ͉ climate change ͉ thermal adaptation
Clines for size and stress resistance traits have been described for several Drosophila species and replicable clines across different species may indicate climatic selection. Here we consider clines in stress resistance traits in an Australian endemic species, D. serrata, by comparing levels of variation within and among isofemale lines initiated with flies collected from the eastern coast of Australia. We also consider clinical variation in chill coma recovery, a trait that has recently been shown to exhibit high levels of variation among Drosophila species. Patterns were compared with those in the cosmopolitan species D. melanogaster from the same area. Both desiccation and starvation resistance showed no clinical pattern despite heritable variation among isofemale lines. In contrast chill coma resistance exhibited a linear cline in the anticipated direction, resistance increasing with latitude. Body size was measured as wing length and body weight. Both traits showed geographic variation and strong non-linear clines with a sharp reduction in size in the tropics. These results are discussed in the context of climatic selection and evolutionary processes limiting species borders.
Abstract. Stress resistance traits in Drosophila often show clinal variation. Although these patterns suggest selection, there is generally no attempt to test how large differences at the geographical level are relative to levels of variation within and between local populations. Here we compare these levels in D. melanogaster from temperate Tasmania versus tropical northern Queensland by focusing on adult resistance to desiccation, cold and starvation stress, as well as associated traits (size, lipid content). For starvation and desiccation resistance, levels of variation were highest among strains from the same population, whereas there was little differentiation among local populations and a low level of differentiation at the geographic level. For adult cold resistance, there was local differentiation and strain variation but no geographic variation. For size (thorax length), geographic differentiation was higher despite some overlap among strains from the tropical and temperate locations. Finally, for lipid levels there was only evidence for variation among strains. The low level of differentiation among geographic locations for stress resistance was further verified with the characterization of isofemale strains from 18 locations along a coastal transect extending from Tasmania to northern Queensland. Crosses among some of the isofemale strains showed that results were not confounded by inbreeding effects. Strains derived from a cross between a tropical and temperate strain differed for all traits, and variation among strains for body size was higher than strain variation within the geographic regions. Unlike in previous studies, lipid content and starvation resistance were not correlated in any set of strains, but there was a correlation between cold resistance and lipid content. There was also a correlation between desiccation resistance and size but only in the geographic cross strains. These findings suggest a large amount of variation in stress resistance at the population level and inconsistent correlation patterns across experimental approaches. In Drosophila, levels of adult resistance to environmental stresses can vary among populations. In particular, desiccation resistance tends to be relatively higher in populations from temperate areas compared to tropical ones, whereas the reverse pattern is evident for starvation resistance ananassae, Zaprionus indianus).Where deviations from clinal patterns occur, these have been interpreted in terms of adaptive differentiation. Stanley and Parsons (1981) and Parsons (1980) found a relatively high level of desiccation resistance in two tropical populations of D. melanogaster contrary to clinal patterns, but these populations were exposed to extremely dry conditions in winter. In the same vein, Da Lage et al. (1990) found that D. melanogaster from a Tunisian oasis exhibited a high level of desiccation resistance, contrary to expectations based on geographic location.These findings suggest that selection directly or indirectly affects resistance traits. Ne...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.