Heat, oxidation and exposure to aldehydes create reactive carbonyl groups on proteins, targeting antigens to scavenger receptors. Formaldehyde is widely used in making vaccines, but has been associated with atypical enhanced disease during subsequent infection with paramyxoviruses. We show that carbonyl groups on formaldehyde-treated vaccine antigens boost T helper type 2 (T(H)2) responses and enhance respiratory syncytial virus (RSV) disease in mice, an effect partially reversible by chemical reduction of carbonyl groups.
Acute respiratory virus infections cause the majority of lower respiratory tract illnesses and hospitalisations of infants and the elderly. The emergence of new respiratory viruses and a high probability that influenza will cause further pandemics highlights the necessity for developing better preventative strategies. Although there is a clear and pressing need for vaccines to prevent respiratory syncytial virus, rhinoviruses, coronaviruses, parainfluenza and human metapneumovirus, progress has been extremely slow. This review presents the current status of vaccine development for respiratory viral diseases and outlines novel approaches for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.