There has been a recent swell of interest in the automatic identification and extraction of opinions and emotions in text. In this paper, we present the first experimental results classifying the intensity of opinions and other types of subjectivity and classifying the subjectivity of deeply nested clauses. We use a wide range of features, including new syntactic features developed for opinion recognition. We vary the learning algorithm and the feature organization to explore the effect this has on the classification task. In 10-fold cross-validation experiments using support vector regression, we achieve improvements in mean-squared error over baseline ranging from 49% to 51%. Using boosting, we achieve improvements in accuracy ranging from 23% to 96%.
Broad coverage, high quality parsers are available for only a handful of languages. A prerequisite for developing broad coverage parsers for more languages is the annotation of text with the desired linguistic representations (also known as "treebanking"). However, syntactic annotation is a labor intensive and time-consuming process, and it is difficult to find linguistically annotated text in sufficient quantities. In this article, we explore using parallel text to help solving the problem of creating syntactic annotation in more languages. The central idea is to annotate the English side of a parallel corpus, project the analysis to the second language, and then train a stochastic analyzer on the resulting noisy annotations. We discuss our background assumptions, describe an initial study on the "projectability" of syntactic relations, and then present two experiments in which stochastic parsers are developed with minimal human intervention via projection from English.
Corpus-based statistical parsing relies on using large quantities of annotated text as training examples. Building this kind of resource is expensive and labor-intensive. This work proposes to use sample selection to find helpful training examples and reduce human effort spent on annotating less informative ones. We consider several criteria for predicting whether unlabeled data might be a helpful training example. Experiments are performed across two syntactic learning tasks and within the single task of parsing across two learning models to compare the effect of different predictive criteria. We find that sample selection can significantly reduce the size of annotated training corpora and that uncertainty is a robust predictive criterion that can be easily applied to different learning models.
We present a practical co-training method for bootstrapping statistical parsers using a small amount of manually parsed training material and a much larger pool of raw sentences. Experimental results show that unlabelled sentences can be used to improve the performance of statistical parsers. In addition, we consider the problem of bootstrapping parsers when the manually parsed training material is in a different domain to either the raw sentences or the testing material. We show that bootstrapping continues to be useful, even though no manually produced parses from the target domain are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.