Exit from mitosis is regulated by Cdc14, which plays an essential role in triggering cyclin-dependent kinase inactivation. Throughout most of the cell cycle, Cdc14 is sequestered in the nucleolus where it remains inactive. After the completion of anaphase, an essential signaling cascade, named the Mitotic Exit Network, or MEN, promotes Cdc14 release. Cdc14 is also released from the nucleolus in early anaphase by another, nonessential, pathway called FEAR (CdcFourteen Early Anaphase Release). Separase (Esp1), polo kinase (Cdc5), the kinetochore protein Slk19, and Spo12, whose molecular function remains unknown, have been identified as members of the FEAR pathway. In meiosis, mutations in CDC14 and its FEAR pathway regulators, CDC5, SLK19, and SPO12, all result it asci that contain only two diploid spores because of a defect in the ability to exit meiosis I. Thus although the FEAR pathway is dispensible for mitotic exit, it is essential for meiosis I exit. The way that the genes of the Mitotic Exit Network contribute to coordinating meiotic progression is less clear. Here, we explore this issue. Our results demonstrate that the orderly transition from meiosis I to meiosis II is accomplished by eliminating MEN function and using the FEAR pathway to modulate cyclin dependent kinase activity, in part through the actions of SIC1.
Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.
Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19D mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-offunction alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules.
Meiosis I in Saccharomyces cerevisiae is dependent upon the motor protein Kar3. Absence of Kar3p in meiosis results in an arrest in prophase I. Cik1p and Vik1p are kinesin-associated proteins known to modulate the function of Kar3p in the microtubule-dependent processes of karyogamy and mitosis. Experiments were performed to determine whether Cik1p and Vik1p are also important for the function of Kar3p during meiosis. The meiotic phenotypes of a cik1 mutant were found to be similar to those of kar3 mutants. Cells without Cik1p exhibit a meiotic defect in homologous recombination and synaptonemal complex formation. Most cik1 mutant cells, like kar3 mutants, arrest in meiotic prophase; however, in cik1 mutants this arrest is less severe. These data are consistent with the model that Cik1p is necessary for some, but not all, of the roles of Kar3p in meiosis I. vik1 mutants sporulate at wild-type levels, but have reduced spore viability. This loss in viability is partially attributable to vegetative chromosome loss in vik1 diploids. Cellular localization experiments reveal that Kar3p, Cik1p, and Vik1p are present throughout meiosis and are consistent with Cik1p and Vik1p having different meiotic roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.