The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.
Background Ontologies are invaluable in the life sciences, but building and maintaining ontologies often requires a challenging number of distinct tasks such as running automated reasoners and quality control checks, extracting dependencies and application-specific subsets, generating standard reports, and generating release files in multiple formats. Similar to more general software development, automation is the key to executing and managing these tasks effectively and to releasing more robust products in standard forms. For ontologies using the Web Ontology Language (OWL), the OWL API Java library is the foundation for a range of software tools, including the Protégé ontology editor. In the Open Biological and Biomedical Ontologies (OBO) community, we recognized the need to package a wide range of low-level OWL API functionality into a library of common higher-level operations and to make those operations available as a command-line tool. Results ROBOT (a recursive acronym for “ROBOT is an OBO Tool”) is an open source library and command-line tool for automating ontology development tasks. The library can be called from any programming language that runs on the Java Virtual Machine (JVM). Most usage is through the command-line tool, which runs on macOS, Linux, and Windows. ROBOT provides ontology processing commands for a variety of tasks, including commands for converting formats, running a reasoner, creating import modules, running reports, and various other tasks. These commands can be combined into larger workflows using a separate task execution system such as GNU Make, and workflows can be automatically executed within continuous integration systems. Conclusions ROBOT supports automation of a wide range of ontology development tasks, focusing on OBO conventions. It packages common high-level ontology development functionality into a convenient library, and makes it easy to configure, combine, and execute individual tasks in comprehensive, automated workflows. This helps ontology developers to efficiently create, maintain, and release high-quality ontologies, so that they can spend more time focusing on development tasks. It also helps guarantee that released ontologies are free of certain types of logical errors and conform to standard quality control checks, increasing the overall robustness and efficiency of the ontology development lifecycle.
Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology’s compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/
The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO’s 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO’s complex disease classification. The DO’s updated website provides multifaceted etiology searching, enhanced documentation and educational resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.