Highlights d SARS-CoV-2 spike evolves during persistent infection to resist common antibodies d Antibody affinity maturation is critical to neutralization breadth d Intra-host evolution foreshadows mutations in circulating spike variants
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated global public health systems and economies, with over 52 million people infected, millions of jobs and businesses lost, and more than 1 million deaths recorded to date. Contact with surfaces contaminated with droplets generated by infected persons through exhaling, talking, coughing and sneezing is a major driver of SARS-CoV-2 transmission, with the virus being able to survive on surfaces for extended periods of time. To interrupt these chains of transmission, there is an urgent need for devices that can be deployed to inactivate the virus on both recently and existing contaminated surfaces. Here, we describe the inactivation of SARS-CoV-2 in both wet and dry format using radiation generated by a commercially available Signify ultraviolet (UV)-C light source at 254 nm. We show that for contaminated surfaces, only seconds of exposure is required for complete inactivation, allowing for easy implementation in decontamination workflows.
Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS-CoV-2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS-CoV-2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.
The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and are easily delivered. Here, AAVCOVID-1, an adeno-associated viral (AAV), Spike gene-based vaccine candidate demonstrates potent immunogenicity in mouse and nonhuman primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T-cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans, does not elicit cross-reactivity to common AAVs used in gene therapy, and its persistence and expression wanes following injection. The single, low dose requirement, high yield manufacturability, and 1-month stability for storage at room-temperature may make this technology well-suited to support effective immunization campaigns for emerging pathogens on a global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.