By reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry, MGSA-alpha, -beta, -gamma, and CXCR2 mRNA expression and proteins are detected in 7 out of 10 human melanoma lesions. The biological consequence of constitutive expression of the MGSA/GRO chemokine in immortalized melanocytes was tested in SCID and nude mouse models. Continuous expression of MGSA/GRO-alpha, -beta, or -gamma in immortalized melan-a mouse melanocytes results in nearly 100% tumor formation for each of the clones tested, whereas clones expressing only the neomycin resistance vector form tumors <10% of the time. Moreover, antibodies to the MGSA/GRO proteins slow or inhibit the formation of tumors in the SCID mouse model and block the angiogenic response to conditioned medium from the tumor-producing clones. Transcription of the MGSA/GRO chemokines is regulated by an enhancesome-like complex comprised of the nuclear factor-kappaB (NF-kappaB), HMG(I)Y, IUR, and Sp1 elements. In Hs294T melanoma cells the half life of the IKB protein is shortened in comparison to normal retinal epithelial cells, facilitating the endogenous nuclear localization of NF-kappaB. We propose that this endogenous nuclear NF-kappaB, working in concert with the 115-kDa IUR-binding factor, promotes constitutive expression of MGSA/GRO genes.
Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)–AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.