Convalescent plasma is currently one of the leading treatments for COVID-19, but there is a paucity of data identifying therapeutic efficacy. A comprehensive analysis of the antibody responses in potential plasma donors and an understanding of the clinical and demographic factors that drive variant antibody responses is needed. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated by a SARS-CoV-2 virus neutralization assay using Vero-E6-TMPRSS2 cells, commercial IgG and IgA ELISA to Spike (S) protein S1 domain (Euroimmun), IgA, IgG and IgM indirect ELISAs to the full-length S or S-receptor binding domain (S-RBD), and an IgG avidity assay. Multiple linear regression and predictive models were utilized to assess the correlations between antibody responses with demographic and clinical characteristics. IgG titers were greater than either IgM or IgA for S1, full length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing titers. Using neutralization titer as the reference, the sensitivity of the IgG ELISAs ranged between 95-98%, but specificity was only 20-32%. Male sex, older age, and hospitalization with COVID-19 were all consistently associated with increased antibody responses across the serological assays. Neutralizing antibody titers were reduced over time in contrast to overall antibody responses. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody levels.
Conflict of interest: EMB reports receiving personal fees and nonfinancial support from Terumo BCT and personal fees and nonfinancial support from Grifols Diagnostic Solutions. EMB is a member of the United States FDA Blood Products Advisory Committee. Any views or opinions that are expressed in this manuscript are those of the authors, based on their own scientific expertise and professional judgment; they do not necessarily represent the views of either the Blood Products Advisory Committee or the formal position of the FDA, and also do not bind or otherwise obligate or commit either the advisory committee or the agency to the views expressed.
The current novel coronavirus disease 2019 (COVID-19) pandemic is revealing profound differences between men and women in disease outcomes worldwide. In the United States, there has been inconsistent reporting and analyses of male-female differences in COVID-19 cases, hospitalizations, and deaths. We seek to raise awareness about the male-biased severe outcomes from COVID-19, highlighting the mechanistic differences including in the expression and activity of angiotensin-converting enzyme 2 (ACE2) as well as in antiviral immunity. We also highlight how sex differences in comorbidities, which can be associated with both age and race, impact male-biased outcomes from COVID-19. We are in the midst of a pandemic. Many of us predicted that the next "100 year pandemic" would be caused by an influenza A virus, like the H1N1 virus that caused the 1918 influenza pandemic. Instead, the current pandemic is caused by a novel β-coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Currently, there are almost 2 million cases and over 100,000 deaths worldwide from the disease caused by this virus, called the novel coronavirus disease 2019 (COVID-19). Like the 1918 influenza pandemic [1], men are at greater risk of more severe COVID-19 outcomes than women, with both sex (i.e., biological differences) and gender (i.e., sociocultural and behavioral differences) playing fundamental roles. The initial reports from China, followed by data from several countries in Europe, have highlighted that there are roughly similar numbers of confirmed SARS-CoV2 cases between men and women. The severity of COVID-19, as measured by hospitalization, admission to intensive care units, and rates of fatality, however, has consistently been 2-fold greater for men than women [2], with the Global Health 50/50 research initiative providing real-time sex-disaggregated data from most countries worldwide [3]. Unfortunately, despite the United States currently having the most COVID-19 cases in the world, considerably less attention has been paid to sex-disaggregation of data than in Europe and China. We took this opportunity to evaluate the current situation in the US to both determine if similar patterns of male-female differences are observed and to document which states are or
Biological sex affects adaptive immune responses, which could impact influenza infection and vaccine efficacy. Infection of mice with 2009 H1N1 induced antibody responses, CD4+ T cell and CD8+ T cell memory responses that were greater in females than males; both sexes, however, were equally protected against secondary challenge with an H1N1 drift variant virus. To test whether greater antibody in females is sufficient for protection against influenza, males and females were immunized with an inactivated H1N1 vaccine that induced predominantly antibody-mediated immunity. Following vaccination, females had greater antibody responses and protection against challenge with an H1N1 drift variant virus than males. Antibody derived from vaccinated females was better at protecting both naïve males and females than antibody from males, and this protection was associated with increased antibody specificity and avidity to the H1N1 virus. The expression of Tlr7 was greater in B cells from vaccinated females than males and was associated with reduced DNA methylation in the Tlr7 promoter region, higher neutralizing antibody, class switch recombination, and antibody avidity in females. Deletion of Tlr7 reduced sex differences in vaccine-induced antibody responses and protection following challenge and had a greater impact on responses in females than males. Taken together, these data illustrate that greater TLR7 activation and antibody production in females improves the efficacy of vaccination against influenza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.