Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 μm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean−atmosphere facility, provide convincing data to show that acidification occurs “across the interface” within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.
Airborne aerosol measurements in the central equatorial Pacific during PASE (Pacific Atmospheric Sulfur Experiment) revealed that cloud condensation nuclei (CCN) activated in marine boundary layer (MBL) clouds were strongly influenced by entrainment from the free troposphere (FT). About 65% entered at sizes effective as CCN in MBL clouds, while ~25% entered the MBL too small to activate but subsequently grew via gas to particle conversion. The remaining ~10% were inferred to be sea salt aerosol.
FT aerosols at low carbon monoxide (CO) mixing ratios (< 63 ppbv) were mostly volatile at 360 °C with a number mode peak of around 30–40 nm dry diameter and tended to be associated with cloud outflow from distant (3000 km or more) deep convection. Higher CO concentrations were commonly associated with trajectories from South America and the Amazon region (ca. ~10 000 km away) and occurred in layers indicative of combustion sources (biomass burning season) partially scavenged by precipitation. These had number modes near 60–80 nm dry diameter with a large fraction of CCN.2 (those activated at 0.2% supersaturation and representative of MBL clouds) prior to entrainment into the MBL. Flight averaged concentrations of CCN.2 were similar for measurements near the surface, below the inversion and in the FT just above the inversion, confirming that subsidence and entrainment of FT aerosol strongly influenced MBL CCN.2. Concurrent flight-to-flight variations of CCN.2 at all altitudes below 3 km also imply MBL CCN.2 concentrations were in quasi-equilibrium with the FT over a 2–3 day timescale.
The observed FT transport over thousands of kilometers indicates teleconnections between MBL CCN and cloud-scavenged sources of both natural and/or residual combustion origin. Nonetheless, in spite of its importance, this source of CCN number is not well represented in most current models and is generally not detectable by satellite because of the low aerosol scattering in such layers as a result of cloud scavenging. In addition, our measurements confirm nucleation in the MBL was not evident during PASE and argue against a localized linear relation in the MBL between dimethyl sulfide (DMS) and CCN suggested by the CLAW hypothesis. However, when the FT is not impacted by long-range transport, sulfate aerosol derived from DMS pumped aloft in the ITCZ (Inter-Tropical Convergence Zone) can provide a source of CCN to the boundary layer via FT teleconnections involving more complex non-linear processes
The SeaSCAPE campaign replicated the marine atmosphere in the laboratory to investigate the links between biological activity in the ocean and the properties of primary sea spray aerosols, volatile organic compounds, and secondary marine aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.