Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its delta 13C signature. Leaching of biogenic DIC was 8.3 +/- 4.9 g m-2 yr-1 for forests, 24.1 +/- 7.2 g m-2 yr-1 for grasslands, and 14.6 +/- 4.8 g m-2 yr-1 for croplands. DOC leaching equalled 3.5 +/- 1.3 g m-2 yr-1 for forests, 5.3 +/- 2.0 g m-2 yr-1 for grasslands, and 4.1 +/- 1.3 g m-2 yr-1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4 +/- 4.0 g C m-2 yr-1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5-98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24-105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems
Northern peatlands cover approximately 4% of the global land surface area. Those peatlands will be particularly vulnerable to environmental and climate change and therefore it is important to investigate their total greenhouse gas (GHG) budgets, to determine the feedback on the climate. Nitrogen (N) is known to influence the GHG budget in particular by affecting the methane (CH4) balance. At two peatland sites in Scotland and Finland GHG fluxes of carbon dioxide (CO2), methane and nitrous oxide (N2O) and nitrogen fluxes were measured as part of the European project ‘NitroEurope’. The Scottish site, Auchencorth Moss, was a GHG sink of −321, −490 and −321 g CO2 eq m−2 year−1 in 2006, 2007 and 2008, respectively, with CO2 as the dominating GHG. In contrast, the dominating GHG at the Finnish site, Lompolojänkkä, was CH4, resulting in the site being a net GHG source of +485 and +431 g CO2 eq m−2 year−1 in 2006 and 2007, respectively. Therefore, Auchencorth Moss had a negative global warming potential (GWP) whilst Lompolojänkkä had a positive GWP over the investigated time period. Initial results yielded a positive N budget for Lompolojänkkä of 7.1 kg N ha−1 year−1, meaning the site was gaining nitrogen, and a negative N budget for Auchencorth Moss of −2.4 kg N ha year−1, meaning the site was losing nitrogen.
Abstract. Greenhouse gas (GHG) fluxes from a seminatural, extensively sheep-grazed drained moorland and intensively sheep-grazed fertilised grassland in South East (SE) Scotland were compared over 4 yr (2007–2010). Nitrous oxide (N2O) and methane (CH4) fluxes were measured by static chambers, respiration from soil plus ground vegetation by a flow-through chamber, and the net ecosystem exchange (NEE) of carbon dioxide (CO2) by eddy-covariance. All GHG fluxes displayed high temporal and interannual variability. Temperature, radiation, water table height and precipitation could explain a significant percentage of seasonal and interannual variations. Greenhouse gas fluxes were dominated by the net ecosystem exchange of CO2 at both sites. Net ecosystem exchange of CO2 and respiration was much larger on the productive fertilised grassland (−1567 and 7157 g CO2eq m−2 yr−1, respectively) than on the seminatural moorland (−267 and 2554 g CO2eq m−2 yr−1, respectively). Large ruminant CH4 (147 g CO2eq m−2 yr−1) and soil N2O (384 g CO2eq m−2 yr−1) losses from the grazed grassland counteracted the CO2 uptake by 34%, whereas the small N2O (0.8 g CO2eq m−2 yr−1) and CH4 (7 g CO2eq m−2 yr−1) emissions from the moorland only impacted the NEE flux by 3%. The 4-yr average GHG budget for the grazed grassland was −1034 g CO2eq m−2 yr−1 and −260 g CO2eq m−2 yr−1 for the moorland.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10−5 and 1.4 × 10−6 cm s−1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.