Purpose:The purpose is to demonstrate whether an appropriately designed liposomal formulation of irinotecan is effective in treating mice with liver-localized colorectal carcinomas.Experimental Design: Irinotecan was encapsulated in 1,2-distearoyl-sn-glycero-3-phosphocholine/cholesterol (55:45 molar ratio) liposomes using an ionophore (A23187)-generated transmembrane proton gradient. This formulation was evaluated in vivo by measuring plasma elimination of liposomal lipid and drug after i.v. administration. Therapeutic activity was determined in SCID/Rag-2M mice bearing s.c. LS180 tumors or orthotopic LS174T colorectal metastases.Results: Drug elimination from the plasma was significantly reduced when irinotecan was administered in the liposomal formulation. At 1 hour after i.v. administration, circulating levels of the liposomal drug were 100-fold greater than that of irinotecan given at the same dose. High-performance liquid chromatographic analysis of plasma samples indicated that liposomal irinotecan was protected from inactivating hydrolysis to the carboxylate form. This formulation exhibited substantially improved therapeutic effects. For the LS180 solid tumor model, it was shown that after a single injection of liposomal irinotecan at 50 mg/kg, the time to progress to a 400-mg tumor was 34 days (as compared with 22 days for animals treated with free drug at an equivalent dose). In the model of colorectal liver metastases (LS174T), a median survival time of 79 days was observed after treatment with liposomal irinotecan (50 mg/kg, given every 4 days for a total of three doses). Saline and free drug treated mice survived for 34 and 53 days, respectively.Conclusions: These results illustrate that liposomal encapsulation can substantially enhance the therapeutic activity of irinotecan and emphasize the potential for using liposomal irinotecan to treat liver metastases.
Purpose: There is an opportunity to augment the therapeutic potential of drug combinations through use of drug delivery technology. This report summarizes data obtained using a novel liposomal formulation with coencapsulated doxorubicin and vincristine. The rationale for selecting these drugs is due in part to the fact that liposomal formulations of doxorubicin and vincristine are being separately evaluated as components of drug combinations.Experimental Design: Doxorubicin and vincristine were coencapsulated into liposomes using two distinct methods of drug loading. A manganese-based drug loading procedure, which relies on drug complexation with a transition metal, was used to encapsulate doxorubicin. Subsequently the ionophore A23187 was added to induce formation of a pH gradient, which promoted vincristine encapsulation.Results: Plasma elimination studies in mice indicated that the drug:drug ratio before injection [4:1 doxorubicin: vincristine (wt:wt ratio)] changed to 20:1 at the 24-h time point, indicative of more rapid release of vincristine from the liposomes than doxorubicin. Efficacy studies completed in MDA MB-435/LCC6 tumor-bearing mice suggested that at the maximum tolerated dose, the coencapsulated formulation was therapeutically no better than liposomal vincristine. This result was explained in part by in vitro cytotoxicity studies evaluating doxorubicin and vincristine combinations analyzed using the Chou and Talalay median effect principle. These data clearly indicated that simultaneous addition of vincristine and doxorubicin resulted in pronounced antagonism.Conclusion: These results emphasize that in vitro drug combination screens can be used to predict whether a coformulated drug combination will act in an antagonistic or synergistic manner.
Overexpression of Bcl-2 protein in cancer cells can inhibit programmed cell death and engender chemoresistance. Reducing Bcl-2 protein levels by using antisense oligonucleotides targeting the gene message can increase the sensitivity of cancer cells to cytotoxic agents. The objective of this work was to investigate the antitumor efficacy of the Bcl-2 antisense oligonucleotide oblimersen (Genasense; G3139), alone and in combination with vinorelbine (VNB), in an ectopic and orthotopic xenograft model of NCI-H460 human non-small-cell lung cancer. In addition to assessing therapeutic effect, Bcl-2 protein expression in tumor tissue isolated from lung and heart was measured. In the ectopic xenograft model, oblimersen at 5 and 10 mg/kg significantly inhibited tumor growth compared with saline-treated control groups, and furthermore, the antitumor effect of oblimersen was associated with down-regulation of Bcl-2 protein in isolated tumor tissue. Moreover, the combination of oblimersen with VNB was more active in inhibiting tumor growth than either drug used alone. In the orthotopic model, oblimersen treatment (5 mg/kg) increased the median survival time of mice to 33 days in comparison with a median survival time of 21 days in the control animals. With this model, the anticancer effect was demonstrated by assessing tumor growth in lung and heart tissues by hematoxylin and eosin staining and Bcl-2 expression by immunohistochemistry. When VNB at 5 mg/kg was combined with oblimersen administered at 5 mg/kg, 33% of mice survived more than 90 days. These data suggest that the combination of oblimersen and VNB may provide enhanced antitumor activities against nonsmall-cell lung cancer.
This study addresses a knowledge gap to enrich our current understanding of the impact of advanced practice nursing roles by linking NC role practices and competencies to key outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.