The diversity of endosymbiotic dinoflagellates (Symbiodinium) in corals at Johnston Atoll in the central Pacific Ocean was assessed using both the internal transcribed spacer 2 (ITS2) region of the nuclear rDNA and chloroplast 23S rDNA. More sequences were recovered from corals using the ITS2 primers than with the chloroplast 23S primers, a finding that reflects both the higher taxonomic resolution and level of intragenomic variation in ITS2 in eukaryotes as compared to chloroplast 23S. Parsimony network analysis, Bray-Curtis coefficient of similarity and 1-way analysis of similarity resolved coral species-and/or genus-specific lineages and/or groupings of Symbiodinium that were generally congruent between the 2 genetic markers. Comparison of coral-Symbiodinium assemblages at Johnston Atoll with those in corals sampled on other reefs in the Pacific reveals differences that include novel host -symbiont unions and a Symbiodinium lineage previously reported to be Caribbean-specific in Acropora from Johnston Atoll.
Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1) coral diseases show distinct associations with multiple environmental factors, 2) incorporating interactions (synergistic collinearities) among environmental variables is important when predicting coral disease spatial patterns, and 3) modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value) will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA), Porites tissue loss (PorTL), Porites trematodiasis (PorTrem), and Montipora white syndrome (MWS), and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT) within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response), led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to particular environmental conditions. Predictive statistical modeling can help to increase our understanding of coral disease ecology worldwide.
Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic sea ice supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in ice-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic sea ice from a series of sites in the Ross Sea using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in sea ice, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from sea ice samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within sea ice. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the sea ice profile in this study. Questions still remain regarding the protein's ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the sea ice ecosystem.
Although sea-ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea-ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII ), photosynthetic efficiency (α), and the irradiance (Ek ) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom-ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m(-2) · s(-1) . In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m(-2) · s(-1) , indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII , α, and rETRmax in bottom-ice algae reduced when exposed to irradiances >26 μmol photons · m(-2) · s(-1) , indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom-ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom-ice algae are photoinhibited in a dose-dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea-ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long-term acclimation to the postmelt light regime of the Southern Ocean.
Supplement. Bacterial community profiles and identification of RFLs using BLAST and temporal changes in nutrient concentrations bp Fig. S1. The raw electropherograms showing restriction fragment lengths (RFLs) of (a) rRNA gene profiles and (b) RNA profiles from the top, middle and bottom of the sea-ice core showing the average of all 20 cores
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.