Fusarium Head Blight (FHB) is the number one floral disease of cereals and poses a serious health hazard by contaminating grain with the harmful mycotoxin deoxynivalenol (DON). Fungi adapt to fluctuations in their environment, coordinating development and metabolism accordingly. G-protein coupled receptors (GPCRs) communicate changes in the environment to intracellular G-proteins that direct the appropriate biological response, suggesting that fungal GPCR signalling may be key to virulence. Here we describe the expansion of non-classical GPCRs in the FHB causing pathogen, Fusarium graminearum , and show that class X receptors are highly expressed during wheat infection. We identify class X receptors that are required for FHB disease on wheat, and show that the absence of a GPCR can cause an enhanced host response that restricts the progression of infection. Specific receptor sub-domains are required for virulence. These non-classical receptors physically interact with intracellular G-proteins and are therefore bona fide GPCRs. Disrupting a class X receptor is shown to dysregulate the transcriptional coordination of virulence traits during infection. This amounts to enhanced wheat defensive responses, including chitinase and plant cell wall biosynthesis, resulting in apoplastic and vascular occlusions that impede infection. Our results show that GPCR signalling is important to FHB disease establishment.
Background: Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. Results: An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14 C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation.Conclusions: Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.