Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.
Bismuth containing compounds are of particular interest for optical or photo-luminescent applications in sensing, bio-imaging, telecommunications, and opto-electronics and as components in non-toxic extremely dense liquids. Bismuth(III) halometallates form highly colored novel ionic liquid based solvents for which experimental characterization and fundamental understanding are limited. In this work, Bismuth(III) halometallates incorporating chloride, bromide, and iodide have been studied via density functional theory employing B3LYP-D3BJ/aug-cc-pVDZ. Lone anions, and anions in clusters with sufficient 1-ethyl-3-methyl-imidazolium [C2C1Im]+ counter-cations to balance the charge, have been investigated in the gas- phase, and with polarizable continuum solvation. Evaluation of speciation profiles indicates that dimeric or trimeric anions are prevalent. In contrast to analogous Al systems, anions of higher charge (−2, −3) are present. Speciation profiles are similar, but not identical with respect to the halide. The Bi based anions [BimXn]x− in the gas phase and generalized solvation environment produce multiple low energy conformers; moreover, key structural interaction patterns emerge from an analysis of ion-pair and neutral-cluster structures (BimXn)x−(C2C1Im)x+ for x = 1, 2, and 3. Cation–anion interactions are weak; with Coulombic and dispersion forces predominating, anion–π structures are favored, while significant hydrogen bonding does not occur. Anion to cation charge transfer is minimal, but mutual polarization is significant, leading to local positive regions in the anion electrostatic potential surface. The key features of experimental x-ray photoelectron, UV–Vis spectra, and Raman spectra are reproduced, validating the computational results and facilitating rationalization of key features.
In a continued effort to improve the suitability of ionic liquids in applications operating at raised temperatures, novel spirocyclic 'azoniaspiro' salts (with cations derived from five-, six-, seven- and eight-membered rings) are prepared and characterised. The structural and thermal properties of these salts are compared against those of established analogues. The stable geometries and ion pairing behaviour of these species are investigated via a combined experimental/computational approach, employing X-ray crystallography and Density Functional Theory (DFT) methods. Subsequently, the thermal stabilities of these organic salts are characterised and compared using a broad range of techniques. Hyphenated Thermogravimetry-Mass Spectrometry investigations enable complex mechanisms underlying thermal decomposition to be elucidated. Lastly, transition state structures are optimised, corresponding to plausible decomposition mechanisms of the azoniaspiro salt, 6-azoniaspiro[6.5]dodecanium chloride, and one prototypical monocyclic species 1-butyl-1-methylpiperidinium chloride, using DFT. The observed improved thermal stabilities of the azoniaspiro salts, and their potential higher-temperature stable-liquid ranges, render them promising candidates for future ionic liquid applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.