This study discusses the occurrence and environmental risk associated with a micropollutant plume originating from the direct discharge of treated wastewater into the Vidy Bay of Lake Geneva, Switzerland. The temporal variations and spatial extent of the plume and its effect on the presence of 39 pharmaceuticals and other micropollutants in the Vidy Bay were assessed over a 10 month period. A pronounced plume was observed from April to October, leading to locally elevated (up to 70-fold) pharmaceutical concentrations compared to the surrounding water column. For three of the measured substances, these plume-associated concentrations were sufficiently high to pose an ecotoxicological risk. The plume depth followed the thermal lake stratification, which moved to lower depths over the course of the warm seasons. Pharmaceutical hotspots associated with the plume were detected as far as 1.5 km downstream of the effluent wastewater outfall, but concentrations typically decreased with increasing distance from the wastewater outfall as a result of dilution and photodegradation. From November to January, when uniform temperature prevailed throughout the water column, no micropollutant plumes were detected. In contrast to pharmaceuticals, most pesticides showed homogeneous concentrations throughout the Vidy Bay during the whole study period, indicating that the effluent wastewater was not their dominant source. A strong linear correlation between electrical conductivity and concentrations of wastewater-derived micropollutants was identified. This relation will allow future estimates of wastewater-derived micropollutant concentrations via simple conductivity measurements.
The presence of potentially persistent and bioactive human metabolites in surface waters gives rise to concern; yet little is known to date about the environmental fate of these compounds. This work investigates the direct photolysis of human metabolites of the antibiotic sulfamethoxazole (SMX). In particular, we determined photolysis kinetics and products, as well as their concentrations in lake water. SMX, N-acetyl sulfamethoxazole, sulfamethoxazole β-D-glucuronide, 4-nitroso sulfamethoxazole, and 4-nitro sulfamethoxazole were irradiated under various light sources and pH conditions. All investigated metabolites, except sulfamethoxazole β-D-glucuronide were found to be more photostable than SMX under environmentally relevant conditions. Between two and nine confirmed photoproducts were identified for SMX-metabolites through ultraperformance liquid chromatography/high-resolution mass spectrometry. Interestingly, photolytic back-transformation to SMX was observed for 4-nitroso-SMX, indicating that this metabolite may serve as an environmental source of SMX. Moreover, two human metabolites along with SMX were regularly detected in Lake Geneva. The knowledge that some metabolites retain biological activity, combined with their presence in the environment and their potential to retransform to the parent compound, underlines the importance of including human metabolites when assessing the effects of pharmaceuticals in the environment.
Comprehensive two-dimensional gas chromatography (GC × GC) chromatograms typically exhibit run-to-run retention time variability. Chromatogram alignment is often a desirable step prior to further analysis of the data, for example, in studies of environmental forensics or weathering of complex mixtures. We present a new algorithm for aligning whole GC × GC chromatograms. This technique is based on alignment points that have locations indicated by the user both in a target chromatogram and in a reference chromatogram. We applied the algorithm to two sets of samples. First, we aligned the chromatograms of twelve compositionally distinct oil spill samples, all analyzed using the same instrument parameters. Second, we applied the algorithm to two compositionally distinct wastewater extracts analyzed using two different instrument temperature programs, thus involving larger retention time shifts than the first sample set. For both sample sets, the new algorithm performed favorably compared to two other available alignment algorithms: that of Pierce, K. M.; Wood, Lianna F.; Wright, B. W.; Synovec, R. E. Anal. Chem.2005, 77, 7735-7743 and 2-D COW from Zhang, D.; Huang, X.; Regnier, F. E.; Zhang, M. Anal. Chem.2008, 80, 2664-2671. The new algorithm achieves the best matches of retention times for test analytes, avoids some artifacts which result from the other alignment algorithms, and incurs the least modification of quantitative signal information.
We report the development and validation of a method to detect and quantify diverse nonpolar halogenated micropollutants in wastewater treatment plant (WWTP) influent, effluent, primary sludge, and secondary sludge matrices (including both the liquid and particle phases) by comprehensive two-dimensional gas chromatography (GC×GC) coupled to micro- electron capture detector (μECD). The 59 target analytes included toxaphenes, polychlorinated naphthalenes, organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, and emerging persistent and bioaccumulative chemicals. The method is robust for a wide range of nonpolar halogenated micropollutants in all matrices. For most analytes, recoveries fell between 70% and 130% in all matrix types. GC×GC-μECD detections of several target analytes were confirmed qualitatively by further analysis with GC×GC coupled to electron capture negative chemical ionization-time-of-flight mass spectrometry (ENCI-TOFMS). We then quantified the concentrations and apparent organic solid-water partition coefficients (Kp) of target micropollutants in samples from a municipal WWTP in Switzerland. Several analyzed pollutants exhibited a high frequency of occurrence in WWTP stream samples, including octachloronaphthalene, PCB-44, PCB-52, PCB-153, PCB-180, several organochlorine pesticides, PBDE-10, PBDE-28, PBDE-116, musk tibetene, and pentachloronitrobenzene. Our results suggest that sorption to dissolved organic carbon (DOC) can contribute substantially to the apparent solids-liquid distribution of hydrophobic micropollutants in WWTP streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.