Highlights• Micropollutants are efficiently removed by both ozone and powdered activated carbon• Specific substances were removed more efficiently by ozone• Powdered activated carbon effectively removed a wider range of pollutants• Both treatments significantly reduced the toxicity of WWTP effluent AbstractMany organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drugs metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the yeast estrogen screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O 3 l -1 or a PAC dose between 10 and 20 mg l -1 . Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants and macropollutants without forming problematic by-products, the strongest decrease in toxicity and a total disinfection of the effluent.
This study discusses the occurrence and environmental risk associated with a micropollutant plume originating from the direct discharge of treated wastewater into the Vidy Bay of Lake Geneva, Switzerland. The temporal variations and spatial extent of the plume and its effect on the presence of 39 pharmaceuticals and other micropollutants in the Vidy Bay were assessed over a 10 month period. A pronounced plume was observed from April to October, leading to locally elevated (up to 70-fold) pharmaceutical concentrations compared to the surrounding water column. For three of the measured substances, these plume-associated concentrations were sufficiently high to pose an ecotoxicological risk. The plume depth followed the thermal lake stratification, which moved to lower depths over the course of the warm seasons. Pharmaceutical hotspots associated with the plume were detected as far as 1.5 km downstream of the effluent wastewater outfall, but concentrations typically decreased with increasing distance from the wastewater outfall as a result of dilution and photodegradation. From November to January, when uniform temperature prevailed throughout the water column, no micropollutant plumes were detected. In contrast to pharmaceuticals, most pesticides showed homogeneous concentrations throughout the Vidy Bay during the whole study period, indicating that the effluent wastewater was not their dominant source. A strong linear correlation between electrical conductivity and concentrations of wastewater-derived micropollutants was identified. This relation will allow future estimates of wastewater-derived micropollutant concentrations via simple conductivity measurements.
Monitoring programs throughout America and Europe have demonstrated the common occurrence of herbicides in surface water. Nevertheless, mixtures are rarely taken into account in water quality regulation. Taking mixtures into account is only feasible if the water quality criteria (WQC) of the single compounds are derived by a common and consistent methodology, which overcomes differences in data quality without settling on the lowest common denominator but making best use of all available data. In this paper, we present a method of defining a risk quotient for mixtures of herbicides with a similar mode of action (RQ m ). Consistent and comparable WQC are defined for single herbicides as a basis for the calculation of the RQ m . Derived from the concentration addition model, the RQ m can be expressed as the sum of the ratios of the measured environmental concentration and the WQC for each herbicide. The RQ m should be less than one to ensure an acceptable risk to aquatic life. This approach has the advantage of being easy to calculate and communicate, and is proposed as a replacement for the current limit of 0.1 µg/L for herbicides in Switzerland. We illustrate the proposed approach on the example of five commonly applied herbicides (atrazine, simazine, terbuthylazine, isoproturon, and diuron). Their risk profile, i.e., the RQ m as a function of time for one exemplary river, clearly shows that the single compounds rarely exceeded their individual WQC. However, the contribution of peaks of different seasonally applied herbicides, whose application periods partially overlap, together with the continuously emitted herbicides from nonagricultural use, results in the exceedance of the RQ m threshold value of one upon several occasions. IntroductionPesticides, including herbicides, differ from most industrial organic compounds in being introduced into the environment with the explicit intention of exerting effects on one or more target organisms. Unfortunately, they do not exert their toxic action only where they are applied, but can, through persistence and transport, reach other compartments of the ecosystem. Monitoring programs throughout North America and Europe have demonstrated the widespread presence of pesticides in various freshwater bodies (1-6). Over the past decade, as public concern has focused on the possible impacts of pesticides on the environment, several European and North American countries (7)(8)(9)(10)(11)(12)(13)(14) have defined specific water quality criteria (WQC) for each pesticide in surface waters. Within the EU, these WQC are often equivalent to the predicted no-effect concentration (PNEC), which aims to ensure the overall protection of aquatic life (9,12,14). This parameter is usually estimated by finding the lowest reliable aquatic effect concentration and applying a safety factor to account for various uncertainties, such as interspecies differences in sensitivity, acute-to-chronic ratios, and laboratory-to-field extrapolations (for review see refs 15-17). The drawback of this approach is...
The occurrence and removal of 58 pharmaceuticals, endocrine disruptors, corrosion inhibitors, biocides, and pesticides, were assessed in the wastewater treatment plant (WWTP) of the city of Lausanne, Switzerland, as well as in the effluent-receiving water body, the Vidy Bay of Lake Geneva. An analytical screening method to simultaneously measure all of the 58 micropollutants was developed based on ultra performance liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The selection of pharmaceuticals was primarily based on a prioritization study, which designated them as environmentally relevant for the Lake Geneva region. Except for the endocrine disruptor 17alpha-ethinylestradiol, all substances were detected in 24-h composite samples of wastewater entering the WWTP or in the treated effluent. Of these compounds, 40% were also detected in raw drinking water, pumped from the lake 3 km downstream of the WWTP. The contributions of dilution and degradation to micropollutant elimination between the WWTP outlet and the raw drinking water intake were established in different model scenarios using hypothetical residence times of the wastewater in Vidy Bay of 1, 4, or 90 d. Concentration decrease due to processes other than dilution was observed for diclofenac, beta-blockers, several antibiotics, corrosion inhibitors, and pesticides. Measured environmental concentrations (MECs) of pharmaceuticals were compared to the predicted environmental concentrations (PECs) determined in the prioritization study and agreed within one order of magnitude, but MECs were typically greater than the corresponding PECs. Predicted no-effect concentrations of the analgesic paracetamol, and the two antibiotics ciprofloxacin and sulfamethoxazole, were exceeded in raw drinking water samples and therefore present a potential risk to the ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.