Protein modification by methylation is important in cellular function. We show here that the Saccharomyces cerevisiae YBR261C/TAE1 gene encodes an N-terminal protein methyltransferase catalyzing the modification of two ribosomal protein substrates, Rpl12ab and Rps25a/Rps25b. The YBR261C/Tae1 protein is conserved across eukaryotes; all of these proteins share sequence similarity with known seven beta strand class I methyltransferases. Wild type yeast cytosol and mouse heart cytosol catalyze the methylation of a synthetic peptide (PPKQQLSKY) that contains the first eight amino acids of the processed N-terminus of Rps25a/Rps25b. However, no methylation of this peptide is seen in yeast cytosol from a ΔYBR261C/tae1 deletion strain. Yeast YBR261C/TAE1 and the human ortholog METTL11A genes were expressed as fusion proteins in Escherichia coli and were shown to be capable of stoichiometrically dimethylating the N-terminus of the synthetic peptide. Furthermore, the YBR261C/Tae1 and METTL11A recombinant proteins methylate variants of the synthetic peptide containing N-terminal alanine and serine residues. However, methyltransferase activity is largely abolished when the proline residue in position 2 or the lysine residue in position 3 is substituted. Thus, the methyltransferases described here specifically recognize the N-terminal X-Pro-Lys sequence motif and we suggest designating the yeast enzyme Ntm1 and the human enzyme NTMT1. These enzymes may account for nearly all previously described eukaryotic protein N-terminal methylation reactions. A number of other yeast and humans proteins also share the recognition motif and may be similarly modified. We conclude that protein X-Pro-Lys N-terminal methylation reactions catalyzed by the enzymes described here may be widespread in nature.
We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by topdown and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-L-[methyl-3 H]methionine. The results show that a ؉14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven -strand methyltransferase, results in the loss of the ؉14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.The addition of methyl groups to proteins from the methyl donor S-adenosylmethionine is one of the most common posttranslational modifications, resulting in an expansion of the physico-chemical characteristics of amino acids and the potential to modulate protein function (1). Major sites of protein methylation are at lysine and arginine residues (2, 3), and less major sites include glutamate, glutamine, and histidine residues, as well as N-terminal amino and C-terminal carboxyl groups (4 -6). The extensive role of histone methylation in transcriptional control highlights the biological significance of this modification (7-10). Protein methylation is also important in the translational machinery. Indeed, many proteins involved in translation, including ribosomal proteins and various elongation and release factors, are subject to methylation in both prokaryotes and eukaryotes (11).Saccharomyces cerevisiae is an ideal organism to investigate the methylation of ribosomal proteins; its genome is well annotated and single open reading frame gene deletion mutants are available. High-resolution intact mass spectrometry suggested that six proteins of the large ribosomal subunit may be methylated: Rpl1ab, Rpl3, Rpl12ab, Rpl23ab, Rpl42ab, and Rpl43ab (12).2 This study, however, did not identify the sites of methylation in these proteins nor did it identify the corresponding methyltransferases. In our laboratory, we have been interested in characterizing these modifications and identifying the methyltransferases involved in an effort to understand their physiological significance in trans...
Eukaryotic elongation factor 1A (eEF1A1) is an abundant cytosolic protein in Saccharomyces cerevisiae and is well conserved amongst species. This protein undergoes multiple posttranslational modifications, including the N-methylation of four side chain lysine residues. However, the enzyme(s) responsible for catalyzing these modifications have remained elusive. Here we show by intact protein mass spectrometry that deletion of either of two genes coding for putative methyltransferases results in a loss in mass of eEF1A. Deletion of the YHL039W gene, a member of the SET domain subfamily including cytochrome c and ribosomal protein lysine methyltransferases, results in an eEF1A mass loss corresponding to a single methyl group. Deletion in the YIL064W/SEE1 gene, encoding a well conserved seven beta strand methyltransferase sequence, has been shown previously to affect vesicle transport; in this work we show that deletion results in the loss of two methyl group equivalents from eEF1A. We find that deletion of thirty five other putative and established SET domain and seven beta strand methyltransferases has no effect on the mass of eEF1A. Finally, we show that wild type extracts, but not YIL064W/SEE1 mutant extracts, can catalyze the S-adenosylmethionine-dependent in vitro methylation of hypomethylated eEF1A. We suggest that YHL039W (now designated EFM1 for elongation factor methyltransferase 1) and YIL064W/SEE1 encode distinct eEF1A methyltransferases that respectively monomethylate and dimethylate this protein at lysine residues.
The mechanisms for the hypocholesterolemic and antiobesity effects of grape seed flours derived from white and red winemaking processing were investigated using male Golden Syrian hamsters fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Cabernet Sauvignon (CabSd), or Syrah (SyrSd) pomace as compared to a HF control diet for 3 weeks. Hamsters fed the ChrSd diet had significantly lowered plasma total-, VLDL-, and LDL-cholesterol concentrations compared to the CabSd, SyrSd, and control diets. The improved plasma cholesterol after ChrSd was correlated with the up-regulation of hepatic genes related to cholesterol (CYP51) and bile acid (CYP7A1) synthesis as well as LDL-cholesterol uptake (LDLR). A reduction of hepatic lipid content was associated with altered expression of the genes related to lipid metabolism. However, fecal total lipid content was not changed. Expression of ileal apical sodium bile acid transporter (ASBT) was not affected by ChrSd, indicating unchanged ileal bile acid reabsorption. The antiobesity effect of the ChrSd diet appears to be related to expression of adipogenesis- and inflammation-related genes in adipose tissue. These findings suggest that flavonoid-rich Chardonnay grape seed flour induced cholesterol-lowering, antiobesity, and anti-inflammatory health benefits and attenuation of hepatic steatosis via regulation of gene expression related to cholesterol, bile acid, and lipid metabolism in liver and adipose tissue.
Our findings indicate that the amount of shrinkage is driven by variation in leaf area, leaf thickness, evergreenness, and woodiness and can be reversed by rehydration. The amount of shrinkage may also be a useful trait related to ecologically and physiological differences in drought tolerance and plant life history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.