Metastasis is the primary cause of death in breast cancer patients. Early detection of high-risk breast cancer, including micrometastasis, is critical in tailoring appropriate and effective interventional therapies. Increased fibronectin expression, a hallmark of epithelial-to-mesenchymal transition, is associated with high-risk breast cancer and metastasis. We have previously developed a penta-peptide CREKA (Cys-Arg-Glu-Lys-Ala)-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agent, CREKA-Tris(Gd-DOTA)3 (Gd-DOTA (4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecyl gadolinium), which binds to fibrin–fibronectin complexes that are abundant in the tumour microenvironment of fast-growing breast cancer. Here we assess the capability of CREKA-Tris(Gd-DOTA)3 to detect micrometastasis with MRI in co-registration with high-resolution fluorescence cryo-imaging in female mice bearing metastatic 4T1 breast tumours. We find that CREKA-Tris(Gd-DOTA)3 provides robust contrast enhancement in the metastatic tumours and enables the detection of micrometastases of size <0.5 mm, extending the detection limit of the current clinical imaging modalities. These results demonstrate that molecular MRI with CREKA-Tris(Gd-DOTA)3 may facilitate early detection of high-risk breast cancer and micrometastasis in the clinic.
Conducting polymer devices that enable precise control of fibronectin conformation over macroscopic areas are reported. Single conformations as well as conformation gradients are achieved by applying an appropriate potential. These surfaces remain biologically relevant and support cell culture; hence, they may serve as a model to understand and control cell-surface interactions, with applications in basic research, medical diagnostics, and tissue engineering.
Stargardt disease (STGD) is an autosomal recessive retinal disorder caused by a monogenic ABCA4 mutation. Currently, there is no effective therapy to cure Stargardt disease. The replacement of mutated ABCA4 with a functional gene remains an attractive strategy. In this study, we have developed a nonviral gene therapy using nanoparticles self-assembled by a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid. The nanoparticles mediated efficient intracellular gene transduction in wild-type (WT) and Abca4 À/À mice. Specific ABCA4 expression in the outer segment of photoreceptors was achieved by incorporating a rhodopsin promoter into the plasmids. The ECO/pRHO-ABCA4 nanoparticles induced substantial and specific ABCA4 expression for at least 8 months, 35% reduction in A2E accumulation on average, and a delayed Stargardt disease progression for at least 6 months in Abca4 À/À mice. ECO/plasmid nanoparticles constitute a promising non-viral gene therapy platform for Stargardt disease and other visual dystrophies.
In this study, we report a novel modality of using a mesoporous silica nanoparticles (MSNs)-based drug delivery system with RGD peptide as a targeting ligand to load arsenic trioxide (ATO) (ATO-MSNs-RGD) for treating MDA-MB-231 triple-negative breast cancer. The MSNs, ATO-MSNs, and ATO-MSNs-RGD were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Brunauer-Emmet-Teller (BET) method. The data indicated that the MSNs possessed MCM-41 type mesopores with high surface area of ∼1021 m 2 /g and pore diameter of ∼2.2 nm. However, both values dramatically decreased after MSNs were encapsulated with ATO or modified with RGD. The amount of surface anchored RGD peptide was determined to be 0.20 mmol/g. Glutathione (GSH) greatly enhanced ATO release from MSNs. Confocal laser microscopy images demonstrated that both ATO-MSNs and ATO-MSNs-RGD had good cellular uptake that improved with longer incubation time and nanoparticle concentration and the ATO-MSNs-RGD showed clearly improved cellular uptake compared with ATO-MSNs. The MSNs, ATO-MSNs, ATO-MSNs-RGD, and ATO were used to treat mice bearing MDA-MB-231 breast tumors every 5 days and the findings suggested that ATO-MSNs-RGD provided superior therapeutic ability over MSNs, ATO-MSNs, and ATO.
Development of a gene delivery system with high efficiency and a good safety profile is essential for successful gene therapy. Here we developed a targeted non-viral delivery system using a multifunctional lipid ECO for treating Leber’s congenital amaurosis type 2 (LCA2) and tested this in a mouse model. ECO formed stable nanoparticles with plasmid DNA (pDNA) at a low amine to phosphate (N/P) ratio and mediated high gene transfection efficiency in ARPE-19 cells because of their intrinsic properties of pH-sensitive amphiphilic endosomal escape and reductive cytosolic release (PERC). All-trans-retinylamine, which binds to interphotoreceptor retinoid-binding protein (IRBP), was incorporated into the nanoparticles via a polyethylene glycol (PEG) spacer for targeted delivery of pDNA into the retinal pigmented epithelium. The targeted ECO/pDNA nanoparticles provided high GFP expression in the RPE of 1-month-old Rpe65−/− mice after subretinal injection. Such mice also exhibited a significant increase in electroretinographic activity, and this therapeutic effect continued for at least 120 days. A safety study in wild-type BALB/c mice indicated no irreversible retinal damage following subretinal injection of these targeted nanoparticles. All-trans-retinylamine-modified ECO/pDNA nanoparticles provide a promising non-viral platform for safe and effective treatment of RPE-specific monogenic eye diseases such as LCA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.