Natural organisms use a four-letter genetic alphabet that makes available 64 triplet codons, of which 61 are sense codons used to encode proteins with the 20 canonical amino acids. We have shown that the unnatural nucleotides dNaM and dTPT3 pair to form an unnatural base pair (UBP) and allow for the creation of semi-synthetic organisms (SSOs) with additional sense codons. Here we report a systematic analysis of the unnatural codons. We identify nine unnatural codons that can produce unnatural protein with nearly complete incorporation of an encoded non-canonical amino acid (ncAA). We also show that at least three of the codons are orthogonal and can be simultaneously decoded in the SSO, affording the first 67-codon organism. The ability to site-specifically incorporate multiple, different ncAAs into a protein should now allow for the development of proteins with novel activities and possibly even SSOs with new forms and functions.
Semisynthetic organisms (SSOs) created from Escherichia coli can replicate a plasmid containing an unnatural base pair (UBP) formed between the synthetic nucleosides dNaM and dTPT3 (dNaM-dTPT3) when the corresponding unnatural triphosphates are imported via expression of a nucleoside triphosphate transporter. The UBP can also be transcribed and used to translate proteins containing unnatural amino acids. However, UBPs are not well retained in all sequences, limiting the information that can be encoded, and are invariably lost upon extended growth. Here we explore the contributions of the E. coli DNA replication and repair machinery to the propagation of DNA containing dNaM-dTPT3 and show that replication by DNA polymerase III, supplemented with the activity of polymerase II and methyl-directed mismatch repair contribute to retention of the UBP and that recombinational repair of stalled forks is responsible for the majority of its loss. This work elucidates fundamental aspects of how bacteria replicate DNA and we use this information to reprogram the replisome of the SSO for increased UBP retention, which then allowed for the first time the construction of SSOs harboring a UBP in their chromosome.
Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing non-canonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy-and ribonucleotide analogs. Importantly, this includes the first in vivo structureactivity relationship (SAR) analysis of unnatural ribonucleoside triphosphates. Similarities and differences between how DNA and RNA polymerases recognize the unnatural nucleotides were observed, and remarkably, we found that a wide variety of unnatural ribonucleotides can be efficiently transcribed into RNA and then productively and selectively paired at the ribosome to mediate the synthesis of proteins with ncAAs. The results extend previous studies, demonstrating that nucleotides bearing no significant structural or functional homology to the natural nucleotides can be efficiently and selectively paired during replication, to include each step of the entire process of information storage and retrieval. From a practical perspective, the results identify the most optimal UBP for information storage, as well as the most optimal unnatural ribonucleoside triphosphates for its retrieval. The optimized SSO is now, for the first time, able to efficiently produce proteins containing multiple, proximal ncAAs.
Current methods to expand the genetic code enable site-specific incorporation of non-canonical amino acids (ncAAs) into proteins in eukaryotic and prokaryotic cells. However, current methods are limited by the number of codons possible, their orthogonality, and possibly their effects on protein synthesis and folding. An alternative approach relies on unnatural base pairs to create a virtually unlimited number of genuinely new codons that are efficiently translated and highly orthogonal because they direct ncAA incorporation using forces other than the complementary hydrogen bonds employed by their natural counterparts. This review outlines progress and achievements made towards developing a functional unnatural base pair and its use to generate semi-synthetic organisms with an expanded genetic alphabet that serves as the basis of an expanded genetic code.
Unnatural base pairs (UBPs) have been developed and used for a variety of in vitro applications, as well as for the engineering of semi-synthetic organisms (SSOs) that store and retrieve increased information. However, these applications are limited by the availability of methods to rapidly and accurately determine the sequence of unnatural DNA. Here, we report the development and application of the MspA nanopore to sequence DNA containing the dTPT3-dNaM UBP. Analysis of two sequence contexts reveals that DNA containing the UBP is replicated with an efficiency and fidelity similar to that of natural DNA and sufficient for use as the basis of an SSO that produces proteins with non-canonical amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.