Create low power, higher performance circuits with shorter design times using this practical guide to asynchronous design. This practical alternative to conventional synchronous design enables performance close to full-custom designs with design times that approach commercially available ASIC standard cell flows. It includes design trade-offs, specific design examples, and end-of-chapter exercises. Emphasis throughout is placed on practical techniques and real-world applications, making this ideal for circuit design students interested in alternative design styles and system-on-chip circuits, as well as circuit designers in industry who need new solutions to old problems.
The dynamic deployment of sensors in wireless networks significantly affects the performance of the network. However, the efficient application of dynamic deployments which determines the positions of the sensors within the network increases the coverage area of the network. As a result of this, dynamic deployment increases the efficiency of the wireless sensor networks (WSNs). In this paper, dynamic deployment was applied to WSNs which consist of mobile sensors by aiming at increasing the coverage area of the network with electromagnetism-like (EM) algorithm which is a population-based optimization algorithm. A new approach has been improved in calculating the coverage rate of the sensors by using binary detection model so as to carry out the dynamic deployments of sensors and it has been thought to reach realistic results efficiently. Simulation results have shown that the EM algorithm can be preferred in the dynamic deployment of mobile sensors within the wireless networks.
This paper introduces two new high-speed quasi delay insensitive (QDI) asynchronous pipeline templates. These new high throughput templates support complex non-linear pipeline structures and are well suited for fine-grain pipelining. Timing analysis and HSPICE simulations show that these templates are 20% and 40% faster than known QDI counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.