Scheduling in High-Performance Computing (HPC) has been traditionally centered around computing resources (e.g., processors/cores). The ever-growing amount of data produced by modern scientific applications start to drive novel architectures and new computing frameworks to support more efficient data processing, transfer and storage for future HPC systems. This trend towards data-driven computing demands the scheduling solutions to also consider other resources (e.g., I/O, memory, cache) that can be shared amongst competing applications. In this paper, we study the problem of scheduling HPC applications while exploring the availability of multiple types of resources that could impact their performance. The goal is to minimize the overall execution time, or makespan, for a set of moldable tasks under multiple-resource constraints. Two scheduling paradigms, namely, list scheduling and pack scheduling, are compared through both theoretical analyses and experimental evaluations. Theoretically, we prove, for several algorithms falling in the two scheduling paradigms, tight approximation ratios that increase linearly with the number of resource types. As the complexity of direct solutions grows exponentially with the number of resource types, we also design a strategy to indirectly solve the problem via a transformation to a single-resource-type problem, which can significantly reduce the algorithms' running times without compromising their approximation ratios. Experiments conducted on Intel Knights Landing with two resource types (processor cores and high-bandwidth memory) and simulations designed on more resource types confirm the benefit of the transformation strategy and show that pack-based scheduling, despite having a worse theoretical bound, offers a practically promising and easy-toimplement solution, especially when more resource types need to be managed.
We consider the problem of scheduling independent jobs that are generated by processing units at the edge of the network. These jobs can either be executed locally, or sent to a centralized cloud platform that can execute them at greater speed. Such edge-generated jobs may come from various applications, such as e-health, disaster recovery, autonomous vehicles or flying drones. The problem is to decide where and when to schedule each job, with the objective to minimize the maximum stretch incurred by any job. The stretch of a job is the ratio of the time spent by that job in the system, divided by the minimum time it could have taken if the job was alone in the system. We formalize the problem and explain the differences with other models that can be found in the literature. We prove that minimizing the max-stretch is NP-complete, even in the simpler instance with no release dates (all jobs are known in advance). This result comes from the proof that minimizing the max-stretch with homogeneous processors and without release dates is NP-complete, a complexity problem that was left open before this work. We design several algorithms to propose efficient solutions to the general problem, and we conduct simulations based on real platform parameters to evaluate the performance of these algorithms.
When independent tasks are to be scheduled onto identical processors, the typical goal is to minimize the makespan. A simple and efficient heuristic consists in scheduling first the task with the longest processing time (LPT heuristic), and to plan its execution as soon as possible. While the performance of LPT has already been largely studied, in particular its asymptotic performance, we revisit results and propose a novel analysis for the case of tasks generated through uniform integer compositions. Also, we perform extensive simulations to empirically assess the asymptotic performance of LPT. Results demonstrate that the absolute error rapidly tends to zero for several distributions of task costs, including ones studied by theoretical models, and realistic distributions coming from benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.