Three diradical pyrazine isomers were characterized using highly correlated, multireference methods. The lowest lying singlet and triplet state geometries of 2,3didehydropyrazine (ortho), 2,5-didehydropyrazine (para), and 2,6-didehydropyrazine (meta) were determined. Two active reference spaces were utilized. The complete active space (CAS) (8,8) includes the σ and σ* orbitals on the dehydrocarbon atoms as well as the valence π and π* orbitals. The CAS (12,10) reference space includes two additional orbitals corresponding to the in-phase and out-of-phase nitrogen lone pair orbitals. Adiabatic and vertical gaps between the lowest lying singlet and triplet states, optimized geometries, canonicalized orbital energies, unpaired electron densities, and spin polarization effects were compared. We find that the singlet states of each diradical isomer contain two significantly weighted configurations, and the larger active space is necessary for the proper physical characterization of both the singlet and triplet states. The singlet−triplet splitting is very small for the 2,3-didehydropyrazine (ortho) and 2,6didehydropyrazine (meta) isomers (+1.8 and −1.4 kcal/mol, respectively) and significant for the 2,5-didehydropyrazine (para) isomer (+28.2 kcal/mol). Singlet geometries show through-space interactions between the dehydocarbon atoms in the 2,3didehydropyrazine (ortho) and 2,6-didehydropyrazine (meta) isomers. An analysis of the effectively unpaired electrons suggests that the 2,5-didehydropyrazine (para) isomer also displays through-bond coupling between the diradical electrons.
A detailed quantum chemical simulation of the excitonic and charge-transfer (CT) states of a bulk heterojunction model containing poly(thieno[3,4-b]thiophene benzodithiophene) (PTB1)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The largest molecular model contains two stacked PTB1 trimer chains interacting with C60 positioned on top of and lateral to the (PTB1)3 stack. The calculations were performed using the algebraic diagrammatic construction method to second order (ADC(2)). One main result of the calculations is that the CT states are located below the bright inter-chain excitonic state, directly accessible via internal conversion processes. The other important aspects of the calculations are the formation of discrete bands of CT states originating from the lateral C60's and the importance of inter-chain charge delocalization for the stability of the CT states. A simple model for the charge separation step is also given, revealing the energetic feasibility of the overall photovoltaic process.
Long-range corrected time-dependent density functional theory (LC-TDDFT) has been applied to compute singlet vertical electronic excitations of oligothiophene molecules and their dimers and compared with the algebraic diagrammatic construction method to second order [ADC(2)], a wave function-based polarization propagator method. The excitation energies obtained from both methods agree to each other excellently. In particular, energetics of charge transfer states is concertedly reproduced. The linear response (LR) and the state specific (SS) approaches have been evaluated to appraise solvent effect on excited states. Benchmarked by the reference wave function method, the necessity of the SS treatment is justified in the prediction of charge transfer (CT) states under the TDDFT framework.
A comprehensive theoretical study of the electronically excited states in complexes between tetracyanoethylene (TCNE) and three aromatic electron donors, benzene, naphthalene and anthracene, was performed with a focus on charge transfer (CT) transitions. The results show that the algebraic diagrammatic construction method to second order (ADC(2)) provides excellent possibilities for reliable calculations of CT states. Significant improvements in the accuracy of the computed transition energies are obtained by using the scaled opposite-spin (SOS) variant of ADC(2). Solvent effects were examined on the basis of the conductor-like screening model (COSMO) which has been implemented recently in the ADC(2) method. The dielectric constant and the refractive index of dichloromethane have been chosen in the COSMO calculations to compare with experimental solvatochromic effects. The computation of optimized ground state geometries and enthalpies of formation has been performed at the second-order Møller-Plesset perturbation theory (MP2) level. By comparison with experimental data and with high-level coupled-cluster methods including explicitly correlated (F12) wave functions, the importance of the SOS approach is demonstrated for the ground state as well. In the benzene-TCNE complex, the two lowest electronic excitations are of CT character whereas in the naphthalene and anthracene TCNE complexes three low-lying CT states are observed. As expected, they are strongly stabilized by the solvent. Geometry optimization in the lowest excited state allowed the calculation of fluorescence transitions. Solvent effects lead to a zero gap between S1 and S0 for the anthracene-TCNE complex. Therefore, in the series of benzene-TCNE to anthracene a change from a radiative to a nonradiative decay mechanism to the ground state is to be expected.
The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of -conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy (ACME) multiconfiguration self-consistent field (MCSCF) method and the Graphically Contracted Function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, the development of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.