The effect of insertion depth and position of cochlear implant (CI) electrode arrays on speech perception remains unclear. This study aimed to determine the relationship between cochlear coverage and speech performance in children with prelingual hearing loss with CI. Pure tone audiometry (PTA) and speech audiometry, including speech reception threshold (SRT) using spondee words and speech discrimination score (SDS) using phonetically balanced monosyllabic words, were tested. The Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scales were also used. Thirty-one ears were implanted with the FLEX 28 electrode array, and 54 with the FORM 24 were included in the current study. For the studied ear, the mean cochlear duct length was 30.82 ± 2.24 mm; the mean cochlear coverage was 82.78 ± 7.49%. Cochlear coverage was a significant negative predictor for the mean pure tone threshold across frequecnies of 0.5, 1, 2, and 4 kHz (PTA4) (p = 0.019). Cochlear coverage was a significant positive predictor of SDS (p = 0.009). In children with cochlear coverage ≥ 82.78%, SDS was significantly better than in those with coverage < 82.78% (p = 0.04). Cochlear coverage was not a significant predictor of the SRT, CAP, or SIR. In conclusion, the cochlear coverage of the CI electrode array has an impact on the users’ SDS. Further long-term studies with larger sample sizes should be conducted to address the most critical factors affecting CI recipients’ outcomes.
Currently, several methods are being applied to assess auditory temporal resolution in a controlled clinical environment via the measurements of gap detection thresholds (GDTs). However, these methods face two issues: the relatively long time required to perform the gap detection test in such settings and the potential of inaccessibility to such facilities. This article proposes a fast, affordable, and reliable application-based method for the determination of GDT either inside or outside the soundproof booth. The proposed test and the acoustic stimuli were both developed using the MATLAB® programming platform. GDT is determined when the subject is able to distinguish the shortest silent gap inserted randomly in one of two segments of white noise. GDTs were obtained from 42 normal-hearing subjects inside and outside the soundproof booth. The results of this study indicated that average GDTs measured inside the booth (5.12 ± 1.02 ms) and outside (4.78 ± 1.16 ms) were not significantly different. The measured GDTs were also comparable to that reported in the literature. In addition, the GDT screening time of the proposed method was approximately 5 minutes, a screening time that is much less than that reported by the literature. Data show that the proposed application was fast and reliable to screen GDT compared to the standard method currently used in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.