Utilizing parallelism at the instruction level is an important way to improve performance. Because the time spent in loop execution dominates total execution time, a large body of optimizations focuses on decreasing the time to execute each iteration. Software pipelining is a technique that reforms the loop so that a faster execution rate is realized. Iterations are executed in overlapped fashion to increase parallelism. Let { ABC } n represent a loop containing operations A, B, C that is executed n times. Although the operations of a single iteration can be parallelized, more parallelism may be achieved if the entire loop is considered rather than a single iteration. The software pipelining transformation utilizes the fact that a loop { ABC } n is equivalent to A { BCA } n −1 BC . Although the operations contained in the loop do not change, the operations are from different iterations of the original loop. Various algorithms for software pipelining exist. A comparison of the alternative methods for software pipelining is presented. The relationships between the methods are explored and possibilities for improvement highlighted.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.