γ − F e2O3 prepared by sol gel process was used to produce nanocomposites with polyaniline of varying aniline concentrations. TEM shows the presence of chain like structure for lower polyaniline concentration. The room temperature hysteresis curves show finite coercivity of ∼ 160 Oe for all the composites, while the saturation magnetization was found to decrease with increasing polymer content. ZFC -FC magnetization measurements indicate high blocking temperatures. It is believed that this indicates a strongly interacting system, which is also shown by our TEM results. Monte Carlo simulations performed on a random anisotropy model with dipolar and exchange interactions match well with experimental results.
Nanoparticles of titanium dioxide were prepared using the sol-gel method without any impurity. Rietveld refinement of XRD data confirmed the anatase phase of synthesized nanoparticles with space group I4 1/ amd (141). XRD pattern revealed the crystalline nature of synthesized nanopowder. The average crystallite size of synthesized nanoparticles was calculated 7.5 nm. The electrochemical performance of synthesized TiO 2 nanopowder was investigated as working electrode. The electrochemical reaction was found diffusion-controlled as observed from cyclic voltammetry (CV) studies at different scan rates. The diffusion-controlled charge storage mechanism also confirmed by charge transfer resistance and Warburg impedance, as calculated from the EIS analysis. SEM micrograph showed the plate-like structure grown in cluster cloud of particles of synthesized TiO 2 nanocrystals. Absorbance and optical bandgap were obtained using UV-Vis spectra. De-convoluted PL spectra provided the emission pattern from the ultra-violet region to green region due to the presence of interstitial oxygen vacancies. The tune bandgap with EIS measurements of synthesized TiO 2 nanoparticles offers its potential application in energy storage devices and photovoltaic applications.
K E Y W O R D SAnatase TiO 2 , CV studies, EIS, PL emission, X-ray diffraction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.