The vast majority of cancer related deaths are caused by metastatic tumors. Therefore, identifying the metastatic potential of cancer cells is of great importance both for prognosis and for determining the correct treatment. Infrared (IR) spectroscopy of biological cells is an evolving research area, whose main aim is to find the spectral differences between diseased and healthy cells. In the present study, we demonstrate that Attenuated Total Reflection Fourier Transform IR (ATR-FTIR) spectroscopy may be used to determine the metastatic potential of cancer cells. Using the ATR-FTIR spectroscopy, we can identify spectral alterations that are a result of hydration or molecular changes. We examined two murine melanoma cells with a common genetic background but a different metastatic level, and similarly, two human melanoma cells. Our findings revealed that higher metastatic potential correlates with membrane hydration level. Measuring the spectral properties of the cells allows us to determine the membrane hydration levels. Thus, ATR-FTIR spectroscopy has the potential to help in cancer metastasis prognosis.
Background The clinical efficiency of laser treatments is limited by the low penetration of visible light used in certain procedures like photodynamic therapy (PDT). Second Harmonic Generation (SHG) PDT is an innovative technique to overcome this limitation that enables the use of Near Infrared (NIR) light instead of visible light. NIR frequency bands present an optical window for deeper penetration into biological tissue. In this research, we compare the penetration depths of 405 and 808 nm continuous wave (CW) lasers and 808 nm pulsed wave (PW) laser in two different modes (high and low frequency). Methods Increasing thicknesses of beef and chicken tissue samples were irradiated under CW and PW lasers to determine penetration depths. Results The 808 nm CW laser penetrates 2.3 and 2.4 times deeper than the 405 nm CW laser in beef and chicken samples, respectively. 808 nm PW (pulse frequency—500 Hz) penetrates deeper than CW laser at the same wavelength. Further, increasing the pulse frequency achieves higher penetration depths. High frequency 808 nm PW (pulse frequency—71.4 MHz) penetrates 7.4- and 6.0-times deeper than 405 nm CW laser in chicken and beef, respectively. Conclusions The results demonstrate the higher penetration depths of high frequency PW laser compared to low frequency PW laser, CW laser of the same wavelength and CW laser with half the wavelength. The results indicate that integrating SHG in the PDT process along with pulsed NIR light may allow the treatment of 6–7 times bigger tumours than conventional PDT using blue light.
We synthesized a series of analogues of 5,20-diphenyl-10,15-bis(4-carboxylatomethoxy)phenyl-21,23-dithiaporphyrin (I) as potential photosensitizers for photodynamic therapy (PDT). The photosensitizers differ in the length of the side chains that bind the carboxyl to the phenol at positions 10 and 15 of the thiaporphyrin. The spectroscopic, photophysical, and biophysical properties of these photosensitizers are reported. The structural changes have almost no effect on the excitation/emission spectra with respect to I's spectra or on singlet oxygen generation in MeOH. All of the photosensitizers have a very high, close to 1.00, singlet oxygen quantum yield in MeOH. On the contrary, singlet oxygen generation in liposomes was considerably affected by the structural change in the photosensitizers. The photosensitizers possessing short side chains (one and three carbons) showed high quantum yields of around 0.7, whereas the photosensitizers possessing longer side chains showed smaller quantum yield, down to 0.14 for compound X (possessing side-chain length of 10 carbons), all at 1 microM. Moreover a self-quenching process of singlet oxygen was observed, and the quantum yield decreased as the photosensitizer's concentration increased. We measured the binding constant of I to liposomes and found Kb = 23.3 +/- 1.6 (mg/mL)-1. All the other photosensitizers with longer side chains exhibited very slow binding to liposomes, which prevented us from assessing their Kb's. We carried out fluorescence resonance energy transfer (FRET) measurements to determine the relative depth in which each photosensitizer is intercalated in the liposome bilayer. We found that the longer the side chain the deeper the photosensitizer core is embedded in the bilayer. This finding suggests that the photosensitizers are bound to the bilayer with their acid ends close to the aqueous medium interface and their core inside the bilayer. We performed PDT with the dithiaporphyrins on U937 cells and R3230AC cells. We found that the dark toxicity of the photosensitizers with the longer side chain (X, VI, V) is significantly higher than the dark toxicity of sensitizers with shorter side chains (I, III, IV). Phototoxicity measurements showed the opposite direction; the photosensitizers with shorter side chains were found to be more phototoxic than those with longer side chains. These differences are attributed to the relationship between diffusion and endocytosis in each photosensitizer, which determines the location of the photosensitizer in the cell and hence its phototoxicity.
The acid-base, spectroscopic, photophysical and liposome-binding properties of the recently synthesized free base, 29H,31H,1,4,8,11,15,18,22,25-octafluoro-2,3,9,10,16,17,23, 24-octakisperfluoro(isopropyl) phthalocyanine, F64PcH2, are reported. The perfluoroalkylation of the phthalocyanine core renders the hydrogen atoms acidic, with a pK(a) = 6. The F64Pc(-2) dianion is detected already at pH 3, by singular-value decomposition analysis of electronic spectra. F64Pc(-2) generates 1O2 with quantum yields phi(delta) = 0.252 (in MeOH) and 0.019 in liposomes. Metallation of the Pc macrocycle to yield F64PcZn increases phi(delta) to 0.606 and 0.126 in MeOH and liposomes, respectively. Surprisingly, F64Pc(-2) (but not F64PcH2 or F64PcZn) binds strongly to liposomes, with a binding constant K(b) = 25 (mg/mL)(-1). The fully protonated F64PcH2, but not the zwitterionic F64Pc(-2), might favor hydrogen bonding, thus reducing its lipophilicity. Similarly, the Lewis acidity of Zn in F64PcZn, and thus its ability to bind water within a hydrophobic perfluoroalkyl pocket, is significantly enhanced by the fluorinated substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.