Efficiently targeted cancer therapy without causing detrimental side effects is necessary for alleviating patient care and improving survival rates. This paper presents observations of morphological changes in H1299 human lung cancer cells following W-band millimeter wave (MMW) irradiation (75–105 GHz) at a non-thermal power density of 0.2 mW/cm2, investigated over 14 days of subsequent physiological incubation following exposure. Microscopic analyses of the physical parameters measured indicate MMW irradiation induces significant morphological changes characteristic of apoptosis and senescence. The immediate short-term responses translate into long-term effects, retained over the duration of the experiment(s), reminiscent of the phenomenon of accelerated cellular senescence (ACS), and achieving terminal tumorigenic cell growth. Further, results were observed to be treatment specific in an energy (dose)-dependent manner and were achieved without the use of chemotherapeutic agents, ionizing radiation, or thermal ablation employed in conventional methods, thereby overcoming the associated side effects. Adaptation of the experimental parameters of this study for clinical oncology concomitant with current developmental trends of non-invasive medical endoscopy alleviates MMW therapy as an effective treatment procedure for human non-small cell lung cancer (NSCLC).
Background The clinical efficiency of laser treatments is limited by the low penetration of visible light used in certain procedures like photodynamic therapy (PDT). Second Harmonic Generation (SHG) PDT is an innovative technique to overcome this limitation that enables the use of Near Infrared (NIR) light instead of visible light. NIR frequency bands present an optical window for deeper penetration into biological tissue. In this research, we compare the penetration depths of 405 and 808 nm continuous wave (CW) lasers and 808 nm pulsed wave (PW) laser in two different modes (high and low frequency). Methods Increasing thicknesses of beef and chicken tissue samples were irradiated under CW and PW lasers to determine penetration depths. Results The 808 nm CW laser penetrates 2.3 and 2.4 times deeper than the 405 nm CW laser in beef and chicken samples, respectively. 808 nm PW (pulse frequency—500 Hz) penetrates deeper than CW laser at the same wavelength. Further, increasing the pulse frequency achieves higher penetration depths. High frequency 808 nm PW (pulse frequency—71.4 MHz) penetrates 7.4- and 6.0-times deeper than 405 nm CW laser in chicken and beef, respectively. Conclusions The results demonstrate the higher penetration depths of high frequency PW laser compared to low frequency PW laser, CW laser of the same wavelength and CW laser with half the wavelength. The results indicate that integrating SHG in the PDT process along with pulsed NIR light may allow the treatment of 6–7 times bigger tumours than conventional PDT using blue light.
Funding informationTIFR, DAE, Government of India; DAE-SRC fellowship; UGC fellowship.The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a nonparticulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia. K E Y W O R D Santenna, cilia, Drosophila, Kif3A, Kif3B, kinesin-like-protein 64D, kinesin-like-protein 68D, mouse
Therapeutically effective treatments of cancer are limited. To calibrate the efficiency of the novel technique we recently discovered to modulate cancer cell viability using tuned electromagnetic fields; H1299 human lung cancer cells were irradiated in a sweeping regime of W-band (75–105 GHz) millimeter waves (MMW) at 0.2 mW/cm2 (2 W/m2). Effects on cell morphology, cell death and senescence were examined and compared to that of non-tumorigenic MCF-10A human epithelial cells. MMW irradiation led to alterations of cell and nucleus morphology of H1299 cells, significantly increasing mortality and senescence over 14 days of observation. Extended irradiation of 10 min duration resulted in complete death of exposed H1299 cell population within two days, while healthy MCF-10A cells remained unaffected even after 16 min of irradiation under the same conditions. Irradiation effects were observed to be specific to MMW treated H1299 cells and absent in the control group of non-irradiated cells. MMW irradiation affected nuclear morphology of H1299 cells only and not of the immortalized MCF-10A cells. Irradiation with low intensity MMW shows an antitumor effect on H1299 lung cancer cells. This method provides a novel treatment modality enabling targeted specificity for various types of cancers.
Objective Pandemic outbreaks necessitate effective responses to rapidly mitigate and control the spread of disease and eliminate the causative organism(s). While conventional chemical and biological solutions to these challenges are characteristically slow to develop and reach public availability; recent advances in device components operating at Super High Frequency (SHF) bands (3–30 GHz) of the electromagnetic spectrum enable novel approaches to such problems. Methods Based on experimentally documented evidence, a clinically relevant in situ radiation procedure to reduce viral loads in patients is devised and presented. Adapted to the currently available medical device technology to cause viral membrane fracture, this procedure selectively inactivates virus particles by forced oscillations arising from Structure Resonant Energy Transfer (SRET) thereby reducing infectivity and disease progression. Results Effective resonant frequencies for pleiomorphic Coronavirus SARS-CoV-2 is calculated to be in the 10–17 GHz range. Using the relation y = -3.308x + 42.9 with x and y representing log10 number of virus particles and the clinical throat swab Ct value respectively; in situ patient–specific exposure duration of ~15x minutes can be utilized to inactivate up to 100% of virus particles in the throat-lung lining, using an irradiation dose of 14.5 ± 1 W/m2; which is within the 200 W/m2 safety standard stipulated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Conclusions The treatment is designed to make patients less contagious enhancing faster recoveries and enabling timely control of a spreading pandemic. Advances in knowledge The article provides practically applicable parameters for effective clinical adaptation of this technique to the current pandemic at different levels of healthcare infrastructure and disease prevention besides enabling rapid future viral pandemics response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.