IntroductionThe recent years have witnessed a continuous increase in lifestyle related health challenges around the world. As a result, researchers and health practitioners have focused on promoting healthy behavior using various behavior change interventions. The designs of most of these interventions are informed by health behavior models and theories adapted from various disciplines. Several health behavior theories have been used to inform health intervention designs, such as the Theory of Planned Behavior, the Transtheoretical Model, and the Health Belief Model (HBM). However, the Health Belief Model (HBM), developed in the 1950s to investigate why people fail to undertake preventive health measures, remains one of the most widely employed theories of health behavior. However, the effectiveness of this model is limited. The first limitation is the low predictive capacity (R2 < 0.21 on average) of existing HBM’s variables coupled with the small effect size of individual variables. The second is lack of clear rules of combination and relationship between the individual variables. In this paper, we propose a solution that aims at addressing these limitations as follows: (1) we extended the Health Belief Model by introducing four new variables: Self-identity, Perceived Importance, Consideration of Future Consequences, and Concern for Appearance as possible determinants of healthy behavior. (2) We exhaustively explored the relationships/interactions between the HBM variables and their effect size. (3) We tested the validity of both our proposed extended model and the original HBM on healthy eating behavior. Finally, we compared the predictive capacity of the original HBM model and our extended model.Methods:To achieve the objective of this paper, we conducted a quantitative study of 576 participants’ eating behavior. Data for this study were collected over a period of one year (from August 2011 to August 2012). The questionnaire consisted of validated scales assessing the HBM determinants – perceived benefit, barrier, susceptibility, severity, cue to action, and self-efficacy – using 7-point Likert scale. We also assessed other health determinants such as consideration of future consequences, self-identity, concern for appearance and perceived importance. To analyses our data, we employed factor analysis and Partial Least Square Structural Equation Model (PLS-SEM) to exhaustively explore the interaction/relationship between the determinants and healthy eating behavior. We tested for the validity of both our proposed extended model and the original HBM on healthy eating behavior. Finally, we compared the predictive capacity of the original HBM model and our extended model and investigated possible mediating effects.Results:The results show that the three newly added determinants are better predictors of healthy behavior. Our extended HBM model lead to approximately 78% increase (from 40 to 71%) in predictive capacity compared to the old model. This shows the suitability of our extended HBM for use in predicting he...
Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing agerelated changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.