This paper investigates in hatching process strategies for additive manufacturing using an electron beam by numerical simulations. The underlying physical model and the corresponding three dimensional thermal free surface lattice Boltzmann method of the simulation software are briefly presented. The simulation software has already been validated on the basis of experiments up to 1.2 kW beam power by hatching a cuboid with a basic process strategy, whereby the results are classified into 'porous', 'good' and 'uneven', depending on their relative density and top surface smoothness. In this paper we study the limitations of this basic process strategy in terms of higher beam powers and scan velocities to exploit the future potential of high power electron beam guns up to 10 kW. Subsequently, we introduce modified process strategies, which circumvent these restrictions, to build the part as fast as possible under the restriction of a fully dense part with a smooth top surface. These process strategies are suitable to reduce the build time and costs, maximize the beam power usage and therefore use the potential of high power electron beam guns.Keywords Powder bed based additive manufacturing · selective electron beam melting · hatching process strategy · thermal free surface lattice Boltzmann method
In this paper we analyze the boundary treatment of the lattice Boltzmann method (LBM) for simulating 3D flows with free surfaces. The widely used free surface boundary condition of Körner et al. (2005) is shown to be first order accurate. The article presents a new free surface boundary scheme that is suitable for second order accurate simulations based on the LBM. The new method takes into account the free surface position and its orientation with respect to the computational lattice. Numerical experiments confirm the theoretical findings and illustrate the different behavior of the original method and the new method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.