IL-15 is a common γ-chain cytokine that has been shown to be more active than IL-2 in several murine cancer immunotherapy models. Although T lymphocytes do not produce IL-15, murine lymphocytes carrying an IL-15 transgene demonstrated superior antitumor activity in the immunotherapy of B16 melanoma. Thus, we sought to investigate the biological impact of constitutive IL-15 expression by human lymphocytes. In this report we describe the generation of a retroviral vector encoding a codon-optimized IL-15 gene. Alternate codon usage significantly enhanced the translational efficiency of this tightly regulated gene in retroviral vector-transduced cells. Activated human CD4+ and CD8+ human lymphocytes expressed IL-15Rα and produced high levels of cytokine upon retroviral transduction with the IL-15 vector. IL-15-transduced lymphocytes remained viable for up to 180 days in the absence of exogenous cytokine. IL-15 vector-transduced T cells showed continued proliferation after cytokine withdrawal and resistance to apoptosis while retaining specific Ag recognition. In the setting of adoptive cell transfer, IL-15-transduced lymphocytes may prolong lymphocyte survival in vivo and could potentially enhance antitumor activity.
The p53 protein is markedly up-regulated in a high proportion of human malignancies. Using an HLA-A2 transgenic mouse model, it was possible to isolate high-avidity murine CTLs that recognize class I-restricted human p53 epitopes. We isolated the α- and β-chain of a TCR from a highly avid murine CTL clone that recognized the human p53264–272 epitope. These genes were cloned into a retroviral vector that mediated high efficiency gene transfer into primary human lymphocytes. Efficiencies of >90% for gene transfer into lymphocytes were obtained without selection for transduced cells. The p53 TCR-transduced lymphocytes were able to specifically recognize with high-avidity, peptide-pulsed APCs as well as HLA-A2.1+ cells transfected with either wild-type or mutant p53 protein. p53 TCR-transduced cells demonstrated recognition and killing of a broad spectrum of human tumor cell lines as well as recognition of fresh human tumor cells. Interestingly, both CD8+ and CD4+ subsets were capable of recognizing and killing target cells, stressing the potential application of such a CD8-independent TCR molecule that can mediate both helper and cytotoxic responses. These results suggest that lymphocytes genetically engineered to express anti-p53 TCR may be of value for the adoptive immunotherapy of patients with a variety of common malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.