In the retina, the receptive fields (RFs) of almost all ganglion cells (GCs) are comprised of an excitatory center and a suppressive surround. The RF center arises from local excitatory bipolar cell (BC) inputs and the surround from lateral inhibitory inputs. Selective antagonists have been used to define the roles of GABAA and GABAC receptor-mediated input in RF organization. In contrast, the role of glycine receptor (GlyR) subunit specific inhibition is less clear because the only antagonist, strychnine, blocks all GlyR subunit combinations. We used mice lacking the GlyRα2 (Glra2−/−) and GlyRα3 (Glra3−/−) subunits, or both (Glra2/3−/−), to explore their roles in GC RF organization. By comparing spontaneous and visually-evoked responses of WT with Glra2−/−, Glra3−/− and Glra2/3−/− ON and OFF GCs, we found that both GlyRα2 and GlyRα3 modulate local RF interactions. In the On pathway, both receptors enhance the excitatory center response; however, the underlying inhibitory mechanisms differ. GlyRα2 participates in crossover inhibition, whereas GlyRα3 mediates serial inhibition. In the Off pathway, GlyRα2 plays a similar role again using crossover inhibition and enhancing excitatory responses within the RF center. Comparisons of single and double KOs indicate that GlyRα2 and GlyRα3 inhibition are independent and additive, consistent with the finding that they use different inhibitory circuitry. These findings are the first to define GlyR subunit specific control of visual function and GlyRα2 subunit specific control of crossover inhibition in the retina.
Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6–24 hours post fertilization (hpf) and 24–48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6–24 hpf were 2.7–4.2-fold lower than media levels, while embryos were 5.7–6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD.
Receptive fields (RFs) of most retinal ganglion cells (RGCs) consist of an excitatory center and suppressive surround. The RF center arises from the summation of excitatory bipolar cell glutamatergic inputs, whereas the surround arises from lateral inhibitory inputs. In the retina, both gamma amino butyric acid (GABA) and glycine are inhibitory neurotransmitters. A clear role for GABAergic inhibition modulating the RGC RF surround has been demonstrated across species. Glycinergic inhibition is more commonly associated with RF center modulation, although there is some evidence that it may contribute to the RF surround. The synaptic glycinergic chloride channels are formed by three homomeric β and two homomeric α subunits that can be glycine receptor (GlyR) α1, α2, α3, or α4. GlyRα composition is responsible for currents with distinct decay kinetics. Their expression within the inner plexiform laminae and neuronal subtypes also differ. We studied the role of GlyR subunit selective modulation of RGC RF surrounds, using mice lacking GlyRα2 (Glra2 -/-), GlyRα3 (Glra3 -/-), or both (Glra2/3 -/-). We chose this molecular genetic approach instead of pharmacological manipulation because there are no subunit selective antagonists and strychnine blocks all GlyRs. Comparisons of annulus-evoked responses among wild type (WT) and GlyRα knockouts (Glra2 -/-, Glra3 -/- and Glra2/3 -/-) show that GlyRα2 inhibition enhances RF surround suppression and post-stimulus excitation in only WT OFF RGCs. Similarities in the responses in Glra2 -/- and Glra2/3 -/- RGCs verify these conclusions. Based on previous and current data, we propose that GlyRα2-mediated input uses a crossover inhibitory circuit. Further, we suggest that GlyRα2 modulates the OFF RGC RF center and surround independently. In summary, our results define a selective GlyR subunit-specific control of RF surround suppression in OFF RGCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.