Background In December, 2019, the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, causing COVID-19, a respiratory disease presenting with fever, cough, and often pneumonia. WHO has set the strategic objective to interrupt spread of SARS-CoV-2 worldwide. An outbreak in Bavaria, Germany, starting at the end of January, 2020, provided the opportunity to study transmission events, incubation period, and secondary attack rates.Methods A case was defined as a person with SARS-CoV-2 infection confirmed by RT-PCR. Case interviews were done to describe timing of onset and nature of symptoms and to identify and classify contacts as high risk (had cumulative face-to-face contact with a confirmed case for ≥15 min, direct contact with secretions or body fluids of a patient with confirmed COVID-19, or, in the case of health-care workers, had worked within 2 m of a patient with confirmed COVID-19 without personal protective equipment) or low risk (all other contacts). High-risk contacts were ordered to stay at home in quarantine for 14 days and were actively followed up and monitored for symptoms, and low-risk contacts were tested upon self-reporting of symptoms. We defined fever and cough as specific symptoms, and defined a prodromal phase as the presence of non-specific symptoms for at least 1 day before the onset of specific symptoms. Whole genome sequencing was used to confirm epidemiological links and clarify transmission events where contact histories were ambiguous; integration with epidemiological data enabled precise reconstruction of exposure events and incubation periods. Secondary attack rates were calculated as the number of cases divided by the number of contacts, using Fisher's exact test for the 95% CIs.Findings Patient 0 was a Chinese resident who visited Germany for professional reasons. 16 subsequent cases, often with mild and non-specific symptoms, emerged in four transmission generations. Signature mutations in the viral genome occurred upon foundation of generation 2, as well as in one case pertaining to generation 4. The median incubation period was 4•0 days (IQR 2•3-4•3) and the median serial interval was 4•0 days (3•0-5•0). Transmission events were likely to have occurred presymptomatically for one case (possibly five more), at the day of symptom onset for four cases (possibly five more), and the remainder after the day of symptom onset or unknown. One or two cases resulted from contact with a case during the prodromal phase. Secondary attack rates were 75•0% (95% CI 19•0-99•0; three of four people) among members of a household cluster in common isolation, 10•0% (1•2-32•0; two of 20) among household contacts only together until isolation of the patient, and 5•1% (2•6-8•9; 11 of 217) among non-household, high-risk contacts.Interpretation Although patients in our study presented with predominately mild, non-specific symptoms, infectiousness before or on the day of symptom onset was substantial. Additionally, the incubation period was often very short ...
The need for timely establishment of diagnostic assays arose when Germany was confronted with the first travel-associated outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Europe. We describe our laboratory experiences during a large contact tracing investigation, comparing previously published real-time RT-PCR assays in different PCR systems and a commercial kit. We found that assay performance using the same primers and probes with different PCR systems varied and the commercial kit performed well.At the end of December 2019, an outbreak caused by a novel coronavirus was announced in Wuhan, China. Since then, the number of cases has increased, especially in China but also in other countries, and public health authorities are in need to rapidly implement diagnostic tools. In this paper, we describe our laboratory experiences with the novel real-time RT-PCR assays comparing different one-step PCR systems and a commercial kit, using a Bio-Rad CFX 96 cycler.
Termites play a major role in the recycling of photosynthetically fixed carbon. With the aid of their symbiotic intestinal flora, they are able to degrade extensively wood constituents such as cellulose and hemicellulose. Nevertheless, the microbial species involved in the degradation of hemicelluloses are poorly defined. The purpose of this paper was to examine the microflora involved in hemicellulose degradation. Different aerobic and facultatively anaerobic bacteria and yeasts were isolated using xylan, arabinogalactan and carboxymethylcellulose as substrates. Gram-positive isolates belonged to the genera Bacillus, Paenibacillus, Streptomyces or the actinobacteria group, while the Gram-negative strains were assigned to the genera Pseudomonas, Acinetobacter, Ochrobactrum, and to genera belonging to the family Enterobacteriaceae. The spectrum and activity of xylan- and arabinogalactan-hydrolysing glycosidases of these new isolates, together with additional bacterial strains originally obtained from enrichments with aromatic compounds were determined.
Toxigenic Corynebacterium diphtheriae is an important and potentially fatal threat to patients and public health. During the current dramatic influx of refugees into Europe, our objective was to use whole genome sequencing for the characterization of a suspected outbreak of C. diphtheriae wound infections among refugees. After conventional culture, we identified C. diphtheriae using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and investigated toxigenicity by PCR. Whole genome sequencing was performed on a MiSeq Illumina with >70×coverage, 2×250 bp read length, and mapping against a reference genome. Twenty cases of cutaneous C. diphtheriae in refugees from East African countries and Syria identified between April and August 2015 were included. Patients presented with wound infections shortly after arrival in Switzerland and Germany. Toxin production was detected in 9/20 (45%) isolates. Whole genome sequencing-based typing revealed relatedness between isolates using neighbour-joining algorithms. We detected three separate clusters among epidemiologically related refugees. Although the isolates within a cluster showed strong relatedness, isolates differed by >50 nucleotide polymorphisms. Toxigenic C. diphtheriae associated wound infections are currently observed more frequently in Europe, due to refugees travelling under poor hygienic conditions. Close genetic relatedness of C. diphtheriae isolates from 20 refugees with wound infections indicates likely transmission between patients. However, the diversity within each cluster and phylogenetic time-tree analysis suggest that transmissions happened several months ago, most likely outside Europe. Whole genome sequencing offers the potential to describe outbreaks at very high resolution and is a helpful tool in infection tracking and identification of transmission routes.
S, Sing A. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheriaassociated bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.