Multi-material compliant mechanisms enable many new design possibilities. Significant progress has been made in the area of design and analysis of multi-material compliant mechanisms. What is now needed is a method to mass-produce such mechanisms economically. A feasible and practical way of producing such mechanisms is through multi-material molding. Devices based on compliant mechanisms usually consist of compliant joints. Compliant joints in turn are created by carefully engineering interfaces between a compliant and a rigid material. This paper presents an overview of multi-material molding technology and describes feasible mold designs for creating different types of compliant joints found in multi-material compliant mechanisms. It also describes guidelines essential to successfully utilizing the multi-material molding process for creating compliant mechanisms. Finally, practical applications for the use of multi-material molding to create compliant mechanisms are demonstrated.
In-mold assembly can be used to create plastic products with articulated joints. This process eliminates the need for post-molding assembly and reduces the number of parts being used in the product, hence improving the product quality. However, designing both products and molds is significantly more challenging in case of in-mold assembly. Currently, a systematic methodology does not exist for developing product and processes to exploit potential benefits of in-mold assembly for creating articulated joints. This paper is a step towards creating such a methodology and reports the following three results. First, it presents a model for designing assemblies and molding process so that the joint clearances and variation in the joint clearances can meet the performance goals. Second, it describes proven mold design templates for realizing revolute, prismatic, and spherical joints. Third, it describes a mold design methodology for designing molds for products that contain articulated joints and will be produced using in-mold assembly process. Three case studies are also presented to illustrate how in-mold assembly process can be used to create articulated devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.