The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient, eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs) have attracted growing attention due to their unique properties in biomedicine, electronics, and other industrial applications. The current investigation addresses the green synthesis of TeNPs using a newly isolated mangrove-associated bacterium, Gayadomonas sp. TNPM15, and their impact on the phytopathogenic fungi Fusarium oxysporum and Alternaria alternata. The biogenic TeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR). The results of TEM revealed the intracellular biosynthesis of rod-shaped nanostructures with a diameter range from 15 to 23 nm and different lengths reaching up to 243 nm. Furthermore, the successful formation of tellurium nanorods was verified by SEM-EDX, and the XRD pattern revealed their crystallinity. In addition, the FTIR spectrum provided evidence for the presence of proteinaceous capping agents. The bioinspired TeNPs exhibited obvious inhibitory effect on the spores of both investigated phytopathogens accomplished with prominent ultrastructure alternations, as evidenced by TEM observations. The biogenic TeNPs impeded spore germination of F. oxysporum and A. alternata completely at 48.1 and 27.6 µg/mL, respectively. Furthermore, an increase in DNA and protein leakage was observed upon exposure of fungal spores to the biogenic TeNPs, indicating the disruption of membrane permeability and integrity. Besides their potent influence on fungal spores, the biogenic TeNPs demonstrated remarkable inhibitory effects on the production of various plant cell wall-degrading enzymes. Moreover, the cytotoxicity investigations revealed the biocompatibility of the as-prepared biogenic TeNPs and their low toxicity against the human skin fibroblast (HSF) cell line. The biogenic TeNPs showed no significant cytotoxic effect towards HSF cells at concentrations up to 80 μg/mL, with a half-maximal inhibitory concentration (IC50) value of 125 μg/mL. The present work spotlights the antifungal potential of the biogenic TeNPs produced by marine bacterium against phytopathogenic fungi as a promising candidate to combat fungal infections.
Cellulose, hemicelluloses, and lignin are the main consistent of the lignocellulosic biomass. Cellulose bonds strongly with hemicellulose and lignin [1]. Cellulose (C 6 H 10 O 5 ) appears as a closely packed dense structure when crystallized. It comprises thousands of glucose subunits linked by a linear β-1,4-glycosidic linkage. The efficient usage of the cellulosic wastes products for the economical production of cellulose through the development of sustainable systems has recently gained interest [2]. Worldwide attention has turned to utilize different cellulolytic microorganisms for the bioconversion of cellulose into valuable products, such as alcohol and sugar. The procedure is carried out under high temperature and pressure. Cellulases, a category of glycosyl hydrolases, involving
BackgroundNext Generation Sequencing (NGS) technologies provide exciting possibilities for whole genome sequencing of a plethora of organisms including bacterial strains and phages, with many possible applications in research and diagnostics. No Streptomyces flavovirens phages have been sequenced to date; there is therefore a lack in available information about S. flavovirens phage genomics. We report biological and physiochemical features and use NGS to provide the complete annotated genomes for two new strains (Sf1 and Sf3) of the virulent phage Streptomyces flavovirens, isolated from Egyptian soil samples.ResultsThe S. flavovirens phages (Sf1 and Sf3) examined in this study show higher adsorption rates (82 and 85%, respectively) than other actinophages, indicating a strong specificity to their host, and latent periods (15 and 30 min.), followed by rise periods of 45 and 30 min. As expected for actinophages, their burst sizes were 1.95 and 2.49 virions per mL. Both phages were stable and, as reported in previous experiments, showed a significant increase in their activity after sodium chloride (NaCl) and magnesium chloride (MgCl2.6H2O) treatments, whereas after zinc chloride (ZnCl2) application both phages showed a significant decrease in infection.The sequenced phage genomes are parts of a singleton cluster with sizes of 43,150 bp and 60,934 bp, respectively. Bioinformatics analyses and functional characterizations enabled the assignment of possible functions to 19 and 28 putative identified ORFs, which included phage structural proteins, lysis components and metabolic proteins.Thirty phams were identified in both phages, 10 (33.3%) of them with known function, which can be used in cluster prediction. Comparative genomic analysis revealed significant homology between the two phages, showing the highest hits among Sf1, Sf3 and the closest Streptomyces phage (VWB phages) in a specific 13Kb region. However, the phylogenetic analysis using the Major Capsid Protein (MCP) sequences highlighted that the isolated phages belong to the BG Streptomyces phage group but are clearly separated, representing a novel sub-cluster.ConclusionThe results of this study provide the first physiological and genomic information for S. flavovirens phages and will be useful for pharmaceutical industries based on S. flavovirens and future phage evolution studies.
The current investigation addressed the green synthesis of silver nanoparticles (AgNPs) using newly isolated silver-resistant rare actinomycetes, Glutamicibacter nicotianae SNPRA1 and Leucobacter aridicollis SNPRA2, and investigated their impact on the mycotoxigenic fungi Aspergillus flavus ATCC 11498 and Aspergillus ochraceus ATCC 60532. The formation of AgNPs was evidenced by the reaction’s color change to brownish and the appearance of the characteristic surface plasmon resonance. The transmission electron microscopy of biogenic AgNPs produced by G. nicotianae SNPRA1 and L. aridicollis SNPRA2 (designated Gn-AgNPs and La-AgNPs, respectively) revealed the generation of monodispersed spherical nanoparticles with average sizes of 8.48 ± 1.72 nm and 9.67 ± 2.64 nm, respectively. Furthermore, the XRD patterns reflected their crystallinity and the FTIR spectra demonstrated the presence of proteins as capping agents. Both bioinspired AgNPs exhibited a remarkable inhibitory effect on the conidial germination of the investigated mycotoxigenic fungi. The bioinspired AgNPs caused an increase in DNA and protein leakage, suggesting the disruption of membrane permeability and integrity. Interestingly, the biogenic AgNPs completely inhibited the production of total aflatoxins and ochratoxin A at concentrations less than 8 μg/mL. At the same time, cytotoxicity investigations revealed the low toxicity of the biogenic AgNPs against the human skin fibroblast (HSF) cell line. Both biogenic AgNPs exhibited feasible biocompatibility with HSF cells at concentrations up to 10 μg/mL and their IC50 values were 31.78 and 25.83 μg/mL for Gn-AgNPs and La-AgNPs, respectively. The present work sheds light on the antifungal prospect of the biogenic AgNPs produced by rare actinomycetes against mycotoxigenic fungi as promising candidates to combat mycotoxin formation in food chains at nontoxic doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.