Thromboembolic complications are the most reported cause of death in coronavirus disease-2019 (COVID-19). Hypercoagulability, platelets activation and endotheliopathy are well-recognized features in COVID-19 patients. The aim of this work was to evaluate circulating soluble selectins P, E and L at the time of hospital admission as predictors for upcoming thrombosis. This retrospective study included 103 hospitalized COVID-19 patients and 50 healthy volunteer controls. COVID-19 patients were categorized into two groups; group 1 who developed thrombosis during hospitalization and group 2 who did not. Soluble selectins were quantitated using ELISA technique. Higher levels of sP-selectin, sE-selectin and sL-selectin were detected in COVID-19 patients compared to controls. Furthermore, significantly higher levels were found in group 1 compared to group 2. Their means were [5.86 ± 1.72 ng/mL vs. 2.51 ± 0.81 ng/mL]; [50 ± 8.57 ng/mL vs. 23.96 ± 6.31 ng/mL] and [4.66 ± 0.83 ng/mL vs. 2.95 ± 0.66 ng/mL] for sP-selectin, sE-selectin and sL-selectin respectively. The elevated selectins correlated with the currently used laboratory biomarkers of disease severity. After adjustment of other factors, sP-selectin, sE-selectin and sL-selectin were independent predictors for thrombosis. At sP-selectin ≥ 3.2 ng/mL, sE-selectin ≥ 32.5 ng/mL and sL-selectin ≥ 3.6 ng/mL thrombosis could be predicted with 97.1%, 97.6% and 96.5% sensitivity. A panel of the three selectins provided 100% clinical sensitivity. Admission levels of circulating soluble selectins P, E and L can predict thrombosis in COVID-19 patients and could be used to identify patients who need prophylactic anticoagulants. E-selectin showed a superior clinical performance, as thrombo-inflammation biomarker, to the most commonly studied P-selectin.
Globally, Klebsiella pneumoniae (K. pneumoniae) has been identified as a serious source of infections. The objectives of our study were to investigate the prevalence of multidrug-resistant (MDR) K. pneumoniae in Tanta University Hospitals, Gharbia Governorate, Egypt; characterize their carbapenem resistance profiles; and identify their different capsular serotypes. We identified and isolated 160 (32%) K. pneumoniae from 500 different clinical samples, performed antimicrobial susceptibility testing, and then used multiplex PCR to detect carbapenemase genes and capsular serotypes K1, K2, K3, K5, K20, K54, and K57. We detected phenotypic carbapenem resistance in 31.3% (50/160) of the isolates; however, molecular assays revealed that 38.75% (62/160) of isolates were carrying carbapenemase-encoding genes. Generally, blaOXA-48 was the prevalent gene (15.5%), followed by blaVIM (15%), blaIMP (7.5%), blaKPC (4%), and blaNDM (3.8%). BlaVIM and blaOXA-48 correlated with phenotypic resistance in 91.67% and 88% of the isolates that harbored them, respectively. Capsular typing showed that the most prevalent pathotype was K1 (30.6%), followed by K57 (24.2%), K54 (19.35%), K20 (9.67%), and K2 (6.45%). A critical risk to community health is posed by the high incidence of multidrug-resistant (MDR) virulent K. pneumoniae isolates from our hospital, and our study examines this pathogen’s public health and epidemiological risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.