Wound management is a major global challenge and poses a significant financial burden to the healthcare system due to the rapid growth of chronic diseases such as diabetes, obesity, and aging population. The ability to detect pathogenic infections and release drug at the wound site is of the utmost importance to expedient patient care. Herein, this study presents an advanced multifunctional dressing (GelDerm) capable of colorimetric measurement of pH, an indicator of bacterial infection, and release of antibiotic agents at the wound site. This study demonstrates the ability of GelDerm to detect bacterial infections using in vitro and ex vivo tests with accuracies comparable to the commercially available systems. Wireless interfaces to digital image capture hardware such as smartphones serve as a means for quantitation and enable the patient to record the wound condition at home and relay the information to the healthcare personnel for following treatment strategies. Additionally, the dressing is integrated within commercially available patches and can be placed on the wound without chemical or physical irritation. This study demonstrates the ability of GelDerm to eradicate bacteria by the sustained release of antibiotics. The proposed technology holds great promise in managing chronic and acute injuries caused by trauma, surgery, or diabetes.
Current treatment strategies for Glioblastoma (GBM)-including surgery, radiotherapy, and chemotherapy with oral administration of temozolomide (TMZ)-still lead to poor survival rates, making the development of more effective therapeutic methods an urgent need. This study presents a new approach for the treatment of GBM patients using a 3D-printed hydrogel-based mesh (GlioMesh), loaded with TMZ-releasing microparticles, that is capable of delivering TMZ over several weeks at the tumor site. Given the challenges associated with loading the amphiphilic TMZ in polymeric substrates, a novel encapsulation strategy is developed using an oil-in-oil emulsion method that improves the encapsulation efficiencies of TMZ in poly(lactic-co-glycolic acid) (PLGA) from <7% to about 61%. The cytotoxic effects of GlioMesh on GBM cells are evaluated in vitro by investigating the resultant levels of DNA break, autophagic activity, and mitochondrial damage. It is shown that GlioMesh produces significantly higher susceptibility to the drug in comparison with free TMZ by maintaining the level of autophagic activity and inducing larger degrees of mitochondrial damage. Sustained delivery of TMZ holds promise for suppressing chemoresistance to TMZ that is normally developed in GBM cells in systemic administration of the drug due to the induction of autophagy.
Wound management is a major global challenge and poses a significant financial burden to the healthcare system. In article https://doi.org/10.1002/adhm.201700718, Mohsen Akbari and co‐workers develop an advanced multifunctional dressing (GelDerm) capable of colorimetric measurement of pH, an indicator of bacterial infection, and release of antibiotic agents at the wound site. GelDerm makes wound care easier and less painful to the patient, and more cost‐effective for the healthcare system.
Maternal antibodies (matAbs) protect against a myriad of pathogens early in life; however, these antibodies can also inhibitde novoimmune responses against some vaccine platforms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) matAbs are efficiently transferred during pregnancy and protect infants against subsequent SARS-CoV-2 infections. It is unknown if matAbs inhibit immune responses elicited by different types of SARS-CoV-2 vaccines. Here, we established a mouse model to determine if SARS-CoV-2 spike-specific matAbs inhibit immune responses elicited by recombinant protein and nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccines. We found that SARS-CoV-2 mRNA-LNP vaccines elicited robustde novoantibody responses in mouse pups in the presence of matAbs. Recombinant protein vaccines were also able to circumvent the inhibitory effects of matAbs when adjuvants were co-administered. While additional studies need to be completed in humans, our studies raise the possibility that mRNA-LNP-based and adjuvanted protein-based SARS-CoV-2 vaccines have the potential to be effective when delivered very early in life.
In article 1900113 Mohsen Akbari and co‐workers develop a hydrogel‐based mesh containing temozolomide‐loaded poly(lactic‐co‐glycolic acid) microspheres with high encapsulation efficiency (GlioMesh) that can release anticancer drugs directly at a tumor site. GlioMesh can conform to the irregular structure of brain tissue because of its flexibility and release drugs for up to two months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.