BackgroundThe genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome.ResultsWe identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks.ConclusionsThis list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.
BackgroundCynomolgus macaques (Macaca fascicularis) are widely used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as rhesus macaques (M. mulatta). We isolated 85,721 clones and determined 9407 full-insert sequences from cynomolgus monkey brain, testis, and liver. These sequences were annotated based on homology to human genes and stored in a database, QFbase .ResultsWe found that 1024 transcripts did not represent any public human cDNA sequence and examined their expression using M. fascicularis oligonucleotide microarrays. Significant expression was detected for 544 (51%) of the unidentified transcripts. Moreover, we identified 226 genes containing exon alterations in the untranslated regions of the macaque transcripts, despite the highly conserved structure of the coding regions. Considering the polymorphism in the common ancestor of cynomolgus and rhesus macaques and the rate of PCR errors, the divergence time between the two species was estimated to be around 0.9 million years ago.ConclusionTranscript data from Old World monkeys provide a means not only to determine the evolutionary difference between human and non-human primates but also to unveil hidden transcripts in the human genome. Increasing the genomic resources and information of macaque monkeys will greatly contribute to the development of evolutionary biology and biomedical sciences.
The substitution rate and structural divergence in the 5'-untranslated region (UTR) were investigated by using human and cynomolgus monkey cDNA sequences. Due to the weaker functional constraint in the UTR than in the coding sequence, the divergence between humans and macaques would provide a good estimate of the nucleotide substitution rate and structural divergence in the 5'UTR. We found that the substitution rate in the 5'UTR (K5UTR) averaged approximately 10%-20% lower than the synonymous substitution rate (Ks). However, both the K5UTR and nonsynonymous substitution rate (Ka) were significantly higher in the testicular cDNAs than in the brain cDNAs, whereas the Ks did not differ. Further, an in silico analysis revealed that 27% (169/622) of macaque testicular cDNAs had an altered exon-intron structure in the 5'UTR compared with the human cDNAs. The fraction of cDNAs with an exon alteration was significantly higher in the testicular cDNAs than in the brain cDNAs. We confirmed by using reverse transcriptase-polymerase chain reaction that about one-third (6/16) of in silico "macaque-specific" exons in the 5'UTR were actually macaque specific in the testis. The results imply that positive selection increased K5UTR and structural alteration rate of a certain fraction of genes as well as Ka. We found that both positive and negative selection can act on the 5'UTR sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.