Hydrogen can be stored in the interstitial sites of the lattices of intermetallic compounds. To date, intermetallic compound LaNi5 or related LaNi5-based alloys are known to be practical hydrogen storage materials owing to their higher volumetric hydrogen densities, making them a compact hydrogen storage method and allowing stable reversible hydrogen absorption and desorption reactions to take place at room temperature below 1.0 MPa. By contrast, gravimetric hydrogen density is required for key improvements (e.g., gravimetric hydrogen density of LaNi5: 1.38 mass%). Although hydrogen storage materials have typically been evaluated for their hydrogen storage properties below 10 MPa, reactions between hydrogen and materials can be facilitated above 1 GPa because the chemical potential of hydrogen dramatically increases at a higher pressure. This indicates that high-pressure experiments above 1 GPa could clarify the latent hydrogen absorption reactions below 10 MPa and potentially explore new hydride phases. In this study, we investigated the hydrogen absorption reaction of LaNi5 above 1 GPa at room temperature to understand their potential hydrogen storage capacities. The high-pressure experiments on LaNi5 with and without an internal hydrogen source (BH3NH3) were performed using a multi-anvil-type high-pressure apparatus, and the reactions were observed using in situ synchrotron radiation X-ray diffraction with an energy dispersive method. The results showed that 2.07 mass% hydrogen was absorbed by LaNi5 at 6 GPa. Considering the unit cell volume expansion, the estimated hydrogen storage capacity could be 1.5 times higher than that obtained from hydrogen absorption reaction below 1.0 MPa at 303 K. Thus, 33% of the available interstitial sites in LaNi5 remained unoccupied by hydrogen atoms under conventional conditions. Although the hydrogen-absorbed LaNi5Hx (x < 9) was maintained below 573 K at 10 GPa, LaNi5Hx began decomposing into NiH, and the formation of a new phase was observed at 873 K and 10 GPa. The new phase was indexed to a hexagonal or trigonal unit cell with a ≈ 4.44 Å and c ≈ 8.44 Å. Further, the newly-formed phase was speculated to be a new hydride phase because the Bragg peak positions and unit cell parameters were inconsistent with those reported for the La-Ni intermetallic compounds and La-Ni hydride phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.