Quantifying signals and uncertainties in climate models is essential for climate change detection, attribution, prediction and projection [1][2][3] . Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain 4 , leading to low confidence in regional projections especially for precipitation over the coming decades 5, 6 . Furthermore, model simulations with tiny differences in initial conditions suggest that uncertainties may be largely irreducible due to the chaotic nature of the climate system 7-9 . However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate predictions of the last six decades project (GA 776613). FJDR, LPC, SW and RB also acknowledge the support from the EUCP project (GA 776613) and from the Ministerio de Economía y Competitividad (MINECO) as part of the CLINSA project (Grant No. CGL2017-85791-R). SW received funding from the innovation programme under the Marie Skĺodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433 and PO from the Ramon y Cajal senior tenure programme of MINECO. The EC-Earth simulations were performed on Marenostrum 4 (hosted by the Barcelona Supercomputing Center, Spain) using Auto-Submit through computing hours
Abstract. The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020–2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5–10 % per decade (or 15–30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.
We employ a regression‐based methodology to study the impact of temperature and precipitation on snowpack variability as a function of elevation in the Central Rocky Mountains. Because of the broad horizontal coverage and thermal heterogeneity of the measurement sites employed, we introduce an elevation correction based on the sites' climatological temperature. For the elevation range investigated (1295–2256 m), and assuming an average atmospheric lapse rate of −6.5°C/km, we find a mostly linear relationship between effective elevation and correlation of temperature or precipitation with snow water equivalent and snowpack duration. We estimate a threshold elevation, 1560 ± 120 m, below (above) which temperature (precipitation) is the main driver of the snowpack. This threshold elevation is robust under a range of assumed atmospheric lapse rates. Locations below this elevation are likely to be affected by projected rising temperatures, with important effects on ecosystems and economic activities dependent on snow.
Abstract. The Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form the land surface component of the Canadian Earth System Model (CanESM). Here, we investigate the impact of changes to CLASS-CTEM that are designed to improve the simulation of permafrost physics. Overall, 18 tests were performed, including changing the model configuration (number and depth of ground layers, different soil permeable depth datasets, adding a surface moss layer), and investigating alternative parameterizations of soil hydrology, soil thermal conductivity, and snow properties. To evaluate these changes, CLASS-CTEM outputs were compared to 1570 active layer thickness (ALT) measurements from 97 observation sites that are part of the Global Terrestrial Network for Permafrost (GTN-P), 105 106 monthly ground temperature observations from 132 GTN-P borehole sites, a blend of five observation-based snow water equivalent (SWE) datasets (Blended-5), remotely sensed albedo, and seasonal discharge for major rivers draining permafrost regions. From the tests performed, the final revised model configuration has more ground layers (increased from 3 to 20) extending to greater depth (from 4.1 to 61.4 m) and uses a new soil permeable depths dataset with a surface layer of moss added. The most beneficial change to the model parameterizations was incorporation of unfrozen water in frozen soils. These changes to CLASS-CTEM cause a small improvement in simulated SWE with little change in surface albedo but greatly improve the model performance at the GTN-P ALT and borehole sites. Compared to the GTN-P observations, the revised CLASS-CTEM ALTs have a weighted mean absolute error (wMAE) of 0.41–0.47 m (depending on configuration), improved from >2.5 m for the original model, while the borehole sites see a consistent improvement in wMAE for most seasons and depths considered, with seasonal wMAE values for the shallow surface layers of the revised model simulation of at most 3.7 ∘C, which is 1.2 ∘C more than the wMAE of the screen-level air temperature used to drive the model as compared to site-level observations (2.5 ∘C). Subgrid heterogeneity estimates were derived from the standard deviation of ALT on the 1 km2 measurement grids at the GTN-P ALT sites, the spread in wMAE in grid cells with multiple GTN-P ALT sites, as well as from 35 boreholes measured within a 1200 km2 region as part of the Slave Province Surficial Materials and Permafrost Study. Given the size of the model grid cells (approximately 2.8∘), subgrid heterogeneity makes it likely difficult to appreciably reduce the wMAE of ALT or borehole temperatures much further.
The Paris Agreement calls for efforts to limit anthropogenic global warming to less than 1.5 °C above preindustrial levels. However, natural internal variability may exacerbate anthropogenic warming to produce temporary excursions above 1.5 °C. Such excursions would not necessarily exceed the Paris Agreement, but would provide a warning that the threshold is being approached. Here we develop a new capability to predict the probability that global temperature will exceed 1.5 °C above preindustrial levels in the coming 5 years. For the period 2017 to 2021 we predict a 38% and 10% chance, respectively, of monthly or yearly temperatures exceeding 1.5 °C, with virtually no chance of the 5‐year mean being above the threshold. Our forecasts will be updated annually to provide policy makers with advanced warning of the evolving probability and duration of future warming events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.